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Abstract 
The eye is the vanguard of the reception process, constituting the point where visual 

information arrives and is transformed into neural signals. While we view dynamic media 
contents, a fine-tuned interplay of mechanisms causes our pupils to dilate and constrict over time 
- and putatively similarly across audience members exposed to the same messages. Research that 
once pioneered pupillometry did actually use dynamic media as stimuli, but this trend then 
stalled, and pupillometry remained underdeveloped in the study of naturalistic media stimuli. 
Here, we introduce a VR-based approach to capture audience members’ pupillary responses 
during media consumption and suggest an innovative analytic framework. Specifically, we 
expose audiences to a set of 30 different video messages and compute the cross-receiver 
similarity of pupillometric responses. Based on this data, we identify the specific video an 
individual is watching. Our results show that this ‘pupil-pulse-tracking’ enables highly accurate 
decoding of video identity. Moreover, we demonstrate that the decoding is relatively robust to 
manipulations of video size and distractor presence. Finally, we examine the relationship 
between pupillary responses and subsequent memory. Theoretical implications for objectively 
quantifying exposure and states of audience engagement are discussed. Practically, we anticipate 
that this pupillary audience response measurement approach could find application in media 
measurement across contexts, ranging from traditional screen-based media (commercials, 
movies) to social media (e.g., TikTok and YouTube), and to next-generation virtual media 
environments (e.g., Metaverse, gaming). 
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Introduction 
The eye is the vanguard of the reception process, the point where visual media content arrives 

at the senses and gets converted into neural impulses. Accordingly, studies of media reception 
mechanisms leverage eye-tracking to capture the eyes’ response to on-screen information. The 
current study uses pupillometry to track exposure to media messages, focusing on whether 
constrictions and dilations of viewers’ pupils can serve as an index to decipher the message to 
which they are exposed. 

The paper is organized as follows: First, we review the functional role and neurocognitive 
mechanisms of the pupil in the reception process. Next, we introduce general measurement 
principles and the recent trend to include pupillometric measurement capabilities, particularly in 
VR headsets. Then, we discuss past applications and current uses of pupillometry in media 
psychology, vision research, and cognitive science more broadly. Finally, we introduce the 
current study in which people are viewing a variety of video messages on a (virtual) screen while 
pupillometric measures are taken, followed by methods, results, and discussion. 

 
Pupil Dynamics: Function, Mechanism, and Measurement  

The pupil - the black, circular opening at the center of the iris - is an essential component of the 
human eye and gatekeeper for the visual system. Its primary function is to regulate the amount of 
light entering the eye (Laeng & Alnaes, 2019). Specifically, when the level of light is high, the 
pupils constrict to limit the amount of incoming light; when the level of light is low, they dilate 
to absorb as much light as possible  (pupillary light reflex; PLR; Ellis, 1981). In addition to 
lighting conditions, pupil size is sensitive to variations in arousal (Hess & Polt, 1960; Mathôt, 
2018; Nunnally et al., 1967; Peavler & McLaughlin, 1967). The muscles of the iris control the 
size of the pupil and the underlying neural circuitry of these systems is increasingly known 
(Clewett et al., 2018; Sirois & Brisson, 2014). Thus, when we process a video, pupils change 
over time in a way that reflects the connections between visual perception and cognition. 

Pupillometry measures how pupil diameter changes over time (Mathôt, 2018). Pupillometry 
has been used for basic and applied purposes, such as neurological research on reflexes, 
alertness, and workload monitoring (Laeng & Alnaes, 2019; Sirois & Brisson, 2014). 
Methodological advantages include that the measure is temporal, providing a moment-to-
moment readout of reactions to an unfolding stimulus, such as a continuous video. Second, 
pupillometry is unobtrusive in that recording is passive; thus, it requires no interruption of 
ongoing reception processes, which could introduce confounds. Third, as a nonverbal measure, 
pupillometry circumvents potential response biases and other difficulties with introspection. 
These advantages suggest pupillometry as an attractive measure to examine how people respond 
to media. 

Pupillometry has been previously suggested for media research but remains underdeveloped. 
The pioneering work of E. Hess constitutes perhaps the first and most well-known applicationsof 
pupillometry to media studies. In one of many studies, Hess measured viewers’ pupils while they 
watched a Western series (de Winter et al., 2021; Hess, 1975). Although Hess’ work helped 
popularize pupillometry, most subsequent applications lie in cognitive psychology (Mathôt, 
2018) rather than media psychology. For example, pupillometry played a role in seminal work on 
cognitive load and effort measurement (Beatty, 1982; Kahneman & Beatty, 1966), which is 
relevant for media research, and the method gets used in neighboring fields (Laeng et al., 2016; 
Piquado et al., 2010). However, it appears that the application of pupillometry to examine 
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responses to media has stalled and no work has been published in the Journal of Media 
Psychology in the last decades.  

 
Pupillometry's Untapped Potential for Media Response Measurement  

Recent trends in eye-tracking technology suggest pupillometry as a promising parameter for 
media response measurement. As of 2023, technology has matured to a degree where the once 
bulky lab equipment is commodified and even integrated into wearable devices. For instance, 
mobile eye-tracking glasses enable researchers to study pupillary changes during video 
consumption (Ehinger et al., 2019; Ferhat & Vilariño, 2016; Steil, 2019). Moreover, there is a 
strong trend to integrate eye-tracking into VR headsets, which makes the method far more 
available, affordable, and scalable. Coupled with an expected trend toward VR-based 
advertising, we can thus expect an uptick in interest in eye-tracking for media response 
measurement. This will implicitly promote pupillometry because it relies on the same technology 
as coordinate-based eye-tracking. 

But aside from availability and desirable measurement properties, the central question is what 
theoretical benefits we can gain from pupillometry? Our answer is simple: We argue that by 
capitalizing on pupillometry’s most well-established and robust phenomenon -  the pupillary 
light reflex (PLR) - it is possible to turn pupillometry into a method for audience response 
measurement. Doing so could have implications for objectively quantifying exposure and states 
of audience engagement, which are key constructs in media and communication research (Biocca 
et al., 1994; de Vreese & Neijens, 2016). This argument is laid out next. 

When the level of illumination increases, the pupil constricts. Conversely, when the level of 
illumination decreases, the pupil dilates. This relationship is governed by the pupillary light 
reflex (PLR), an automatic response to changes in lighting conditions that regulates visual 
sensitivity. In most psychology-focused applications, this pupillary light reflex tends to be 
treated as a confound1 (Mathôt, 2018). By contrast, our proposal is that we can directly mine the 
full pupillometric information - including the PLR-based responses. Specifically, we argue that 
depending on the goal of the research, one can treat the PLR responses as signal instead of noise.  

The rationale behind this reasoning is as follows: A video message consists of time-varying 
information. When this information arrives at the eye, it will evoke dilations and constrictions of 
the pupil over time. Critically, the general nature of these mechanisms suggests that when 
different members of an audience process the same video, their pupils should constrict and dilate 
similarly over time, revealing correlated fluctuations across viewers. In the context of human 
neuroimaging, this principle is sometimes labeled as audience coupling or brain synchronization; 
the underlying approach is known as inter-subject correlation analysis (Hasson et al., 2010; 
Schmälzle & Grall, 2020; Wang et al., 2012). In a nutshell, our proposal is to adopt this approach 
for the analysis of pupillometric data. Of note, such pupil-ISC has already been demonstrated to 
be generally feasible, but the theoretical connections for media response measurement have not 
been articulated, and it is unclear whether and to which degree the pupillary responses can be 
used to decode which video a person is viewing (Golland et al., 2014; Madsen et al., 2021; 
Madsen & Parra, 2022). 

                                                 
1 To be clear, we do not dispute that for many cognitive science applications, the physical stimulus characteristics 
that drive the PLR are, in fact, a confound. Thus, we do not dispute that it makes typically much sense to control for 
these characteristics to more purely assess cognitive modulations of pupil dilation. However, the core argument of 
this paper is that for some applications, particularly for audience measurement, the PLR is not necessarily a 
confound/noise, but can serve as a source of high-quality signal. 
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To summarize, we propose that by comparing pupillometric data across viewers, one could
objectively track exposure to specific messages during the ongoing reception process. This has
been a goal of media measurement for decades (Biocca et al., 1994; de Vreese & Neijens, 2016).
Achieving this goal could thus have important theoretical consequences for quantifying the
nexus between exposure and reception processes and practical potential for audience response
measurement. 

 
The Current Study and Hypotheses 

 Visual media change over time, which in turn triggers changes in pupil dilation. When
multiple viewers comprising an audience are exposed to the same video messages, we can,
therefore, expect that their pupils should fluctuate similarly (see Figure 1).  
 

Figure 1. Study Overview. Top left panel: VR head-mounted device (HP Omnicept) affords the
seamless delivery of the experimental video stimuli with integrated measurement potential. The
device has a high-quality eye tracker that captures pupil dilation at 50 Hz. Top right panel: In
the VR environment, a TV/living room setup can be realized, and the experimental videos are
presented on a wall-mounted monitor inside VR - just like in a real living room. This setup
controls the environment, making it identical for every participant, but preserves the realism of
the TV viewing situation. Top right panels: 30 spots of commercials and health-related PSAs are
presented in three different conditions: Either as a full-screen video (100%), as a shrunk version
of the video (25%nd), or as a shrunk version of the video surrounded by flickering distractor
images (25%wd), mimicking the situation in which banner ads would pop up around the video.
With this setup, we can compare the similarity of pupillary response traces across the different
video conditions (because video presentations are counterbalanced across participants) as well
as across different videos. Bottom right panel: The rationale of using Pupil-ISC analysis is that
viewing the same spot in different conditions should elicit similar temporal pupil-
dilation/constriction profiles, which could be used to decode which spot a participant is seeing. 

 
Based on this reasoning, we studied how the pupils of an audience comprising 60 viewers

respond to a collection of video messages. We used a VR-integrated eye tracker, which allowed
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for simultaneous stimulus delivery (showing videos) and response measurement (capturing pupil 
dilation). Notably, VR offers another benefit that is worth highlighting: to manipulate and 
control the viewing conditions. Specifically, we used VR to create a virtual media reception lab 
comprising a stylish TV viewing room with a (virtual) wall-mounted screen on which the videos 
were displayed.  

Our overarching hypothesis was that pupillometry traces during exposure to specific videos 
would correlate across viewers. In turn, mining this signal should enable above-chance decoding 
of a given video’s identity. We thus predicted that by collecting a repertoire of pupillometry data 
from other users exposed to several videos, one could predict which video a new user is viewing. 
If true, then this would have implications for the measurement of exposure, a foundational 
construct for mass communication and a key variable in advertising (de Vreese & Neijens, 2016; 
Hornik, 2002; Smit & Neijens, 2011).  

To further examine the boundary conditions of this expected effect, we manipulated the videos 
in different conditions (between subjects): First, the video was presented at normal size, filling 
the entire screen (100%). Two additional conditions presented a shrunk version of the same 
videos (25%, like, e.g., a YouTube or TikTok video that appears in the top right corner of the 
screen), thus retaining the content but shifting overall size and brightness parameters. One 
condition presented this 25% version of the video without distractors, whereas in another 
condition, the 25% video was flanked by distracting thumbnail images (the thumbnails appeared 
and disappeared over the duration of the video, much like in banner advertising on websites). We 
expected that the pupillary response similarity (and thus decoding performance) should be 
highest for the original videos (100%), followed by the distraction-free, shrunk version (25%, no 
distractors), and, finally, the version with distractors (25%, with distractors). To further mimic 
incidental media viewing conditions, we introduced an unannounced memory test. This way, we 
can also link the experimental manipulation and the reception-response data to outcomes, 
particularly to subsequent memory.  

 
Methods 

The data and materials for this study are available at 
https://anonymous.4open.science/r/vr_video_pupil_study-0CEE/ 
 
Participants 

Sixty participants were recruited at a large university in the United States (mean age = 20.72, 
31 self-identified women). Data for one participant had to be excluded.2 All participants 
provided written informed consent to the IRB-approved protocol and they received course.  

 
Stimuli, Virtual Viewing Room, and Experimental Procedures  

Stimuli: 30 videos (all 30 seconds long) served as experimental stimuli. 18 video clips had 
commercial content, 12 were health-related public service announcements. All videos were 
presented in three types of format: 100% full-screen size, 25% screen size with no distractors, 
                                                 
2 Across the different conditions and measures, data from some participants had to be excluded, although such cases 
were rare: For instance, for some pupil-ISC analyses, there should be 20 participants per viewing condition (100 vs. 
25nd vs. 25wd, i.e., 3*20=60). However, because of technical failure, combined with the randomized presentation of 
spots, not all 30 pupil-spot data were available. This led to random missing data for a few spots (i.e., values can be 
based on 19 instead of 20 values). However, given the random presentation rate and the few instances in which such 
crashes occurred, the overall data loss was very low, and certainly far lower compared to other measures (e.g., ECG, 
EEG, or fMRI, where regularly 10-30% of data are missing). 
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and 25% screen size with distractors. In the 100% condition, the video was shown, filling the 
entire TV screen. In the 25% condition, the same video was shown on the TV but shrunk in size 
to fill only 25% of the area. In the 25%-plus-distractors condition, the same video was shown 
(shrunk to 25%), but this time with added distractor images (see Figure 1 for an illustration). 
These distractors included brand logos and popular imagery. Distractors were shown to the right 
and below the actual videos - just like it is common on popular websites like YouTube, 
Facebook, or Baidu. Each participant viewed 10 videos from each of these three conditions. 
Messages were selected and presented in a pseudo-randomized order so that across the 60 
participants, each video version was viewed by 20 viewers. Every viewer saw the same 30 
messages, but each source message was seen in only one of the three format options. 

VR Viewing Room: We developed a virtual viewing room with a wall-mounted TV to show the 
videos. The core room model was downloaded from Sketchfab.com and edited in Vizard’s 
Inspector software. The VR room looked like a real and natural living room with a flat-screen 
TV on the wall. Participants could walk and take place in a seat on a (virtual) couch (in real life, 
they were seated on a comfortable chair in the laboratory), right across the wall on which the 
video started playing. This resembles the increasingly common VR-viewing setups, which 
feature similar living-room style settings and virtual displays. In a validation study 
(redacted_for_review), it was established that viewing videos in this virtual environment as 
compared to a real-life TV viewing setup elicited highly similar psychophysiological and 
subjective response patterns across audiences. 

Experimental Procedure: Participants completed a vision test before the VR-integrated eye-
tracking was put on and calibrated. For a subsample of participants, we also measured EEG, but 
these data are independent of the current study and will be reported elsewhere.  

The experiment involved passively viewing the 30 videos on the virtual TV screen.  Between 
each video, there was a 9-second short break video featuring a 3-2-1-countdown and a fixation 
cross to focus participants’ attention. After completing the virtual TV viewing session, which 
took about 20 minutes, a structured interview asked which videos they remembered (free recall). 
Finally, participants responded to a brief survey about demographics and their VR experience. In 
addition to the free-recall, we measured participants’ memory using the frame-recognition 
method (Rossiter et al., 2001), presenting screenshots of all videos and distractors. Finally, we 
asked participants survey questions regarding spatial presence (Hartmann et al., 2016), 
immersive tendencies (Witmer & Singer, 1998), and the occurrence of symptoms while in VR 
(Kim et al., 2018).   

 
Measurement and Analysis Methods 

Equipment for VR and Pupillometry: Participants viewed the videos wearing an HP-Reverb-
Omnicept-Pro. This HMD contains an integrated Tobii eye-tracker (120 Hz). We used the Vizard 
software (WorldViz Inc. Santa Barbara) to create the VR environment, develop control 
procedures, and measure pupil dilation. Pupil dilation data were recorded continuously during 
the whole VR-viewing-experience, digital triggers marked the on- and off-set of each video, and 
were saved together with the pupil measurements to a data file. 

Pupillometry Recording and Analysis: The main dependent variable was participants’ pupil 
dilation over time. Pupil dilation values for each participant, video, and sub-condition were 
parsed from the resulting data file using Python-based routines, and pupil values missing due to 
eye blinks were coded as NaNs and subsequently interpolated. All analyses were run in Jupyter 
notebooks using Python 3.7.  
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After recording, the data file from each participant was read in, video-related pupil-time-series 
were extracted, eventual blinks were interpolated, and the data were downsampled to 20 Hz and 
stored individually for each participant, each of the 30 videos, and each of the three conditions 
(100, 25nd, 25wd).   

To examine the similarity of responses to the same videos and across sub-conditions, we 
computed ISC analysis between viewers’ pupil dilation data. Specifically, ISC analysis was 
conducted for each video under the 100% condition and then for the 25nd and 25wd conditions  
(e.g., all pupillary time series for the 20 participants who viewed the 100% version of the 30s 
“Milk”-commercial, etc.). ISC analysis was conducted in line with guidelines for neuroimaging 
measures, which were adapted to the context of pupil measurement (Nastase et al., 2019). We 
visualize the pupil-timeseries and their correlations using the split-half methods, but under the 
hood, we carried out also pairwise and leave-one-out ISC analysis (the online code repository 
documents all analyses in a reproducible manner).  

Moreover, we used the captured pupillary data to train a machine-learning model and tested its 
performance in predicting which of the videos a held-out participant was viewing (i.e., testing 
whether pupillary data enabled spot decoding).  

Lastly, we also explored potential subsequent memory effects by comparing the pupillary 
responses for videos that were subsequently recalled (or recognized) against those for videos that 
were forgotten.   

Measurement of Message Recall, Recognition, and Survey Responses: After participants 
finished the VR-video-viewing session, the headset was removed and participants completed a 
verbal interview in which they were asked to freely recall as many videos as possible. Finally, 
they completed a recognition test in which screenshots of the videos were shown along with 
distractor screenshots. Finally, they answered survey questions regarding presence, immersion, 
and potential intereference due to VR-related symptoms (see above). 

 
Results 

After the virtual TV viewing session, participants provided free verbal comments and survey-
based answers about their experience in VR. In general, they enjoyed the study and described it 
as realistic, engaging, and immersive. Analysis of survey responses reveals that participants felt 
spatially present in the virtual room (meanspatial presence = 3.58, s.d. = 0.76, scales range from 1-5) 
and experienced very little to no discomfort symptoms (meandiscomfort = 1.38, s.d. = 0.21). 
Together, these results confirm that the virtual TV room provided an authentic viewing 
experience, with the added benefit that their pupillary responses could be captured throughout 
exposure and without interference.  

 
Strongly Correlated Pupil Responses for all 30 Spots 

To examine responses to the video messages, we first extracted the pupillary trace data for 
each video (in each condition) from every participant’s raw data file. Next, we combined all 
pupillary data for a given video/condition across all participants. Thus, for the first video (a 
commercial by Airbnb), we obtained 20 pupillary traces for the 100% video condition, 20 traces 
for the 50%-nd (no distraction)-condition, and 20 traces for the 50%-wd (with distraction) 
condition (yielding a total of 60 participants exposed to all variants of the Airbnb spot - and 
analogously for all other spots). We then plotted these data and computed the degree of inter-
subjective response similarity. As can be seen from Figure 2, viewing the same video spot 
evokes fluctuations in pupil size that are shared among viewers, supporting our prediction.  
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Statistical analysis of these results confirmed highly significant pupil-ISC3 for 29 out of 30
spots. On average, the split-half correlation between pupil time series (in the fullscreen
condition) was r = 0.78, with a maximum of r = 0.93 (for ‘kidney’) and a minimum of r = 0.08
(for the ‘fitness’-spot)4. 

 

 

                                                 
3 Note that for this analysis, we rely on the split-half analysis method in which the group of viewers is divided into
two halves and ISC is computed across the averages. ISC is also high and significant if assessed at the level of each
individual, as will become apparent in the analyses below (specifically the predictive model). However, computing
ISC across groups helps overcome individual measurement noise and allows to better demonstrate the results.
Mathematically, the procedures are related and the group ISC is generally higher, but ranking is preserved. 
4

 Of note, we computed these analyses after excluding the onset-transient that is marked by the shaded regions; these
onset-transients comprised the 3-2-1-countdown video, the black transition screen, as well as the first seconds of the
actual spot. 
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Figure 2: Pupillary response trajectories for all 30 spots (100% viewing condition). Black and 
gray time series show the average pupillary time series averaged across each sub-audience 
(n=10 viewers per line). As can be seen, the pupillary time series for each spot closely resemble 
each other across viewers exposed to the same spot, but they differ between spots. Gray lines 
mark the countdown/onset period of each video, which was excluded from the analysis.  

 
Reception Data Enable Decoding of Spot Identity and Reveal the Influence of Viewing 
Condition 

Having demonstrated that viewers’ pupils respond similarly to each video, we next examined 
the role of viewing condition. Specifically, we carried out the same analysis as for the 100%-
viewing condition (see Figure 2) and also for the 25nd- and 25wd-conditions. As shown in 
Figure 3, this analysis revealed that even despite the different sizes (100 vs. 25%) and the 
varying perceptual demands (with vs. without distractors), the pupil traces still respond very 
reliably - and with a unique signature that is specific to each spot. Although Figure 3 only 
displays a subset of three exemplary spots (Milk, Prediabetes, and Cookies) due to space 
limitations, the pattern of results held again for the remainder (average correlation for 25nd r = 
0.74 and for 25-wd r = 0.68).  

Critically, not only were the pupillary signatures for a particular spot correlated within each 
condition (e.g., across viewers exposed to the milk spot in the 25-wd-condition), but a given 
spot’s pupil response signature was also preserved across conditions: As shown in the middle 
panel of Figure 3, robust correlations of pupillary traces emerge for each spot (shown under 
different conditions), but correlations across the different spots vary, leading to the block-like 
diagonal structure.  

Finally, we turned to the decoding question, which asked: Can we decode which spot a given 
individual is viewing based on their pupillary trace data? To answer this, we proceeded as 
follows: We combined all pupillary data (from a given condition) into a large dataset, one row 
for every pupillary time series, and labeled every row based on the video’s name. Then we 
applied machine learning methods (from the scikit-learn library and its time-series sublibrary 
sktime, specifically using a TimeSeriesForestClassifier with a 5-fold cross-validation) to fit a 
predictive model.  

The results are illustrated in the bottom panel in Figure 3. We find that once the model is fit 
with pupillary time series data from other viewers, we can decode with relatively high accuracy 
which of the 30 spots an individual is viewing. Given that there are 30 spots, the chance level for 
this analysis would be 1/30 = 0.03. The achieved performance varied between 56% for the 100% 
condition), 40% for the 25%-nd condition, and 28% for the 25%-wd condition, and thus 
consistently above chance.  
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Figure 3. Pupil-ISC across viewing conditions and decoding accuracy. Top panel: Pupil-ISC
results for three exemplary spots across conditions. Middle panel: When comparing the pupil-
time- series from each condition for the three different spots, a robust block structure emerges
along the diagonal. Thus, the same spot evokes a similar pupil signature over time, but different
spots evoke a different signature. Bottom panel: Decoding analyses for all 30 spots. Given that
pupil-time-series for a given spot are very similar to each other, it is possible to decode which
spot a given individual is viewing from their pupil-time-series-data. The smaller confusion
matrices exhibit a clear diagonal structure, and the bar graph at the bottom summarizes the
overall decoding performance for each condition. 
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Analysis of Memory Performance and Pupil-Memory Relationship 

Having established that pupillary response time series are correlated across viewers and can be
used to identify which spot a person is viewing, we next asked whether, beyond such general on
audience-wide pupil responses, the pupillary data would also carry information about individual
characteristics, particularly subsequent memory. To this end, we first compared overall per-spot
memory (recall and recognition performance for a given spot - irrespective of pupil data). The
results of this analysis are displayed in Figure 4. 

 

Figure 4.  Memory Performance Across Viewing Conditions. Left panel: For the free recall,
the condition in which a person was exposed to the spot (100%, 25%nd, 25%wd) strongly
influenced recall. Of note, spots were assigned to different conditions for different participants
hence this effect is not dependent on a specific spot’s memorability but is driven by the different
presentation sizes (100% vs. 25%) or modes (with vs. without distraction). Central panel: For
the recognition method, a few distractors were included to ensure that high recognition
performance was not due to guessing. The marked difference between these distractors and the
real memory items shows that guessing cannot explain the pattern of results. Right panel: The
pattern of results for spot recognition matches the pattern for free recall. Bottom panels:
Predicted effect plots from statistical analyses (see text for details). 
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For the free recall, we find that if a given spot was shown in the 100% condition, more 

participants recall it than when the same spot was shown in the 25%-nd or 25%-wd condition.5 A 
repeated-measures ANOVA (by-spots) revealed a significant main effect of viewing condition, F 
= 4.2, p = .02. On average, spots that were seen in the 100% condition were recalled by an 
average of mrecall-100 = 6 participants (out of a maximum of 20). This was significantly higher 
compared to an average total recall of mrecall-25nd = 4.8 and mrecall-25wd 4.4 in the 25% conditions 
with or without distractors, respectively (see Figure 4). 

A closely matching pattern of results was found when assessing memory via the recognition 
method. First, as expected, we find a far superior memory for spots that were actually presented 
compared to distractors (mean recognition_ratereal_spots = .83, s.d. = .11; mean recognition 
ratedistractors = .16, s.d. = .18; t = 13.99, p < .001; Figure 4, top middle panel; of note, we also 
found that the four thematically related distractors were more often falsely recognized than 
unrelated distractors, with average rates of mrelated = .23 vs. munrelated = .09, respectively). Further 
exploration of the recognition rate based on the viewing condition in which a participant had 
been exposed to the spot again revealed a pattern that corresponds with the recall data: As shown 
in Figure 4 (top left panel), spots that were viewed in the 100% condition were recognized best, 
followed by spots in the 25%nd condition, and finally the 25%wd condition. Compared to the 
recall, which was relatively rare (~15-35%), recognition performance was much higher (between 
~70-90%). Critically, the difference in performance based on viewing condition was highly 
significant (Fviewing_condition = 13.9, p < .001).  

Having established that the different viewing conditions led to varying levels of 
recall/recognition, we can already assume that pupillary responses and memory performance will 
be related. For instance, the bottom panel in Figure 3 demonstrates that spot-wise decodability is 
highest for spots viewed in the  100% condition, followed by the 25%nd and 25%wd conditions; 
this corresponds with the pattern of recall and recognition rates across conditions seen in Figure 
4. However, aside from this general relationship between pupil response (decodability) and 
subsequent memory, we were interested in examining the pupil-to-memory relationship at the 
level of individual trials. More specifically, we computed an ISC value for every trial that 
indicated how similar this participant’s pupillary signature was to the rest of the group (i.e., to 
the pupillary trace of all other participants who viewed the same spot under the same condition). 
The underlying reasoning is that the degree of inter-subjective similarity might serve as an index 
of neurotypical processing of a given spot. We then combined these trial-level ISC results with 
the information about memory, i.e., whether the spot was recalled/recognized or forgotten by this 
given individual, along with information about the condition, the spot, and the specific 
participant. The logic of this analysis is based on prior work that showed that when brain regions 
involved in memory encoding respond more reliably across viewers of specific TV scenes, then 
participants will be more likely to recognize that scene (Hasson et al., 2008). To examine this, 
we specified a generalized linear mixed-effects regression model using recognition (or recall) as 
a binary outcome (Bates et al., 2015), testing for the impact of ISC on recognition (or recall) 
probability while accommodating for influences of condition (modeled as a fixed effect) as well 
as spot-, and subject-specific differences (modeled as random effects). These analyses revealed a 
mixed pattern of results: At a global level, higher ISC was generally associated with higher 
recognition (or recall), as can be expected from the fairly large between-condition ISC 

                                                 
5
 Note that because different participants viewed different spots in different conditions, this analysis controls for the varying memorability of 

certain spots. 
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differences and the parallel differences in spot recognition (or recall). However, consideration of 
the differences between conditions, spots, and subjects suggested a number of interactions, such 
as a stronger relationship between ISC and recognition for the 50wd condition (see Figure 4). 
Specifically, for the recognition outcome, we observed a marginally significant interaction (p = 
0.07) between ISC and condition on recognition performance, along with a highly significant 
main effect of condition (due to the overall higher recognition results in 100 vs. 25%nd vs. 
25%wd, p < 0.001). With regard to the fixed effects, we found that the relationship between ISC 
and recognition was greater in the 25%wd condition compared to the 25%nd and 100% 
condition. For the recall outcome, the pattern was generally similar, with a significant interaction 
between ISC and condition, p = 0.03, yet without a significant main effect of condition, p = 0.23. 
However, we note that the level of recall was generally low, which leads to fewer positive 
occurrences. Overall, these results suggest that the condition manipulation is associated with 
ISC, and pupillary ISC for given spots can be linked to memory outcomes. However, more 
complex interactions involving the level of ISC, the condition, and the memory outcome suggest 
that more work is needed to examine how pupil-ISC interacts with task-, subject-, and stimulus-
level factors. 

Discussion 
In this study, we exposed participants to media messages while capturing their pupillary 

responses. Our main goal was to study the inter-subject similarity of the pupillary traces for each 
video and to test whether it is possible to decode from the pupillometric response which message 
a given receiver/viewer is exposed to. 

The results of this study are clear and can be summarized as follows: The pupillometry data are 
very robustly correlated across recipients of the same video. The degree of similarity (ISC) is 
affected by the presentation condition, but it is still possible to decode with high accuracy which 
video a person is viewing based on their pupillary process data, even across different exposure 
conditions. Finally, we examined the relationship between pupillary responses and subsequent 
memory, finding some evidence that pupillary ISC is related to subsequent memory. Overall, 
these findings support the validity and potential of this novel approach.  

Perhaps the most notable finding is that it is possible to decode which of the 30 videos a person 
is viewing by looking at how their pupil fluctuates during reception. This ability to decode a 
spot’s identity is a consequence of the fact that different viewers’ pupils respond with similar 
pupil-size fluctuations to the same content. Thus, by creating a sort of database of typical pupil 
responses to video content, we can create a characteristic profile of the pupillary response 
fluctuations. We refer to this profile as the “pupil pulse” or pupillary response signature of a 
given video. Much like a barcode, a fingerprint, or an iris scan are signatures of personal identity, 
this is a characteristic profile of message identity. Because different videos have different 
physical characteristics, it is possible to database pupil response signatures from other viewers 
and then compare incoming reception data to the stored templates to decide which video the 
current person is likely viewing.  In this way, pupillometry offers a promising method to connect 
media content and reception response. All that is needed for this is information about when a 
video starts, which is technically very feasible to obtain in media measurement.  

  
Broader Implications: Pupillometry for Audience Response Measurement 

Looking at the field of communication and media psychology from a bird’s-eye perspective, 
one can notice several theoretical fault lines and measurement gaps between content, reception, 
and effects analyses (Schmälzle & Huskey, 2023). Specifically, the concept of exposure - 
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whether an individual message is received by a given individual - lies at the foundation of mass 
communication and media effects (Hornik, 2002). Put simply, if a message fails to meet the eye, 
it cannot have any effect. This simple causal logic applies to media influence in general as well 
as specific effects like those of commercial advertising. Accordingly, the field has amassed 
elaborate audience metrics, such as readership estimates for print, TV ratings for viewership, or 
social media analytics and digital trace data (Peng et al., 2017), and elaborate statistical methods 
strive to incorporate exposure data in moderation and linkage analyses (de Vreese & Neijens, 
2016; Kranzler et al., 2019). Yet, one must acknowledge that these varied methods often suffer 
from key gaps in how they ascertain actual exposure, thus failing to unequivocally establish the 
causal chain (Spencer et al., 2005) from media content to reception mechanisms and on to media. 
For instance, aggregated TV viewership data leave it unclear whether a given individual actually 
‘took in’ a given message or whether they were present in another room but had the TV running. 
Likewise, even though social media enables tracking of large-scale audience behaviors, it is far 
from clear whether these all reflect real peoples’ activities6. With this in mind, the ability to close 
these gaps and zoom in on the exposure-reception-retention nexus is the main theoretical 
contribution of the approach presented here: By tracking the pupil dilations of individual 
viewers, we can conclude that their eyes were following the continuous unfolding of the media 
stimulus, and we can relate this data to subsequent memory.  

However, aside from these theoretical considerations, an improved ability to rigorously 
quantify exposure and reception responses is not only theoretically significant, but will likely 
have substantial practical significance: Specifically, this new approach appears promising for 
next-generation media measurement7, particularly the Metaverse, and we can already expect that 
advertisers in the new media ecosystem will have a large interest in harvesting such user data 
(much like what happened with ‘cookies’ on the internet). Obviously, this development has 
important ethical and privacy implications that require our attention. 
 
Strengths, Limitations, and Avenues for Future Research 

The strengths of the current study relate mainly to its particular mix of innovative 
methodologies for measuring, analyzing, and interpreting media-evoked responses in a moment-
to-moment and unobtrusive manner. We also view the use of VR as promising because it comes 
with on-board measurement potential and allows to perfectly standardize and potentially 
manipulate environmental conditions; however, the approach can also work outside of VR and 
with stationary or mobile eye-tracking.  

Given the novelty of this approach, many potential limitations could be mentioned. For 
instance, we only tested short video messages, and while we used a decent sample (30 messages 
and 60 viewers), questions regarding generalizability remain. Likewise, our choice to present 
                                                 

6 For instance, in the media measurement industry, it is very common to mark media content in order to identify 
how often people consume specific content. Unique landing pages and web cookies are good examples of these 
widespread practices. For streaming content, these can be equipped with specific markers as well. However, this 
practice is laborious, costly, and the flood of ever-changing online content like ads, and short videos is an obstacle to 
these practices though. With this in mind, the approach offers a fresh way of thinking about this problem: Instead of 
marking the content, one can compare how similarly different people respond to the same content. That way, content 
does not have to be marked, but it is possible to decode what people are viewing; and an added benefit is that such 
receiver-sided bio- and neurometric data could predict outcomes like memory, especially when used at scale. 
 

7 but it clearly also applies to traditional media formats.  
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normal videos and two altered versions (one reduced to 25% size, the other reduced 
accompanied by distractors) represents just one of many options for manipulations of the 
stimulus, requiring many others to follow. For instance, one could ask if the results would be the 
same had we also turned the videos to grayscale, enlarged or shrunk them further, or added user-
sided attention manipulations, and so forth. Clearly, although our results are positive and 
promising, there are also many open questions with regard to further psychological influences 
beyond the more stimulus-driven pupillary-light reflex. For instance, if we take the view of 
advertisers who might be interested in, e.g., targeting or tailoring of messages, which is a 
relevance-based manipulation, then one might ask how this affects pupillometric data in addition 
to, or in interaction with the PLR. 

Despite these limitations, further exploration holds significant promise. Avenues that appear 
highly favorable include the integration of pupillometric measures with other data types, most 
notably eye coordinates, but also a broader set of neurocognitive data. Furthermore, we opted for 
the use of a TV viewing room to expose viewers under standardized conditions, but from a 
practical perspective, exposure would likely occur in varying circumstances, which could also be 
examined. Finally, the primary focus of this study was on the video (message identity), with a 
secondary focus on incidental memory for those videos. Now that the paradigm and robust 
results are established for these basic foci, future work can zoom in on more nuanced 
psychological reception processes in between (e.g., interest, engagement, and so forth). 
 
Summary and Conclusion 

In conclusion, the eye is at the vanguard of the reception process, representing the place where 
visual information arrives and is transformed into neural signals. The Pupillary Light Reflex 
(PLR) is one of the first and most robust effects media have on the neurocognitive system. This 
study exposed audiences to visual content and used pupillometric traces to decipher which video 
individuals viewed. This approach could have important practical applications in media and 
advertising response measurement. Moreover, because the eye represents the actual point of 
contact between an external media stimulus and the subject-sided reception response, it is the 
place where “exposure” happens, and “reception” begins. Given the enormous significance of 
this exposure-reception nexus for all forms of mass-mediated communication, a principled 
ability to objectively and unobtrusively capture relevant data from viewers, and with an eye 
towards collectively shared audience responses, holds significant promise for tightening the 
theoretical link between media content and effects. 

 
Open practices, data, and code availability. The data and materials for this study are available 
at https://anonymous.4open.science/r/vr_video_pupil_study-0CEE/. Additional VR-related 
scripts will be made available to interested researchers. 
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