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Tweet

Why knowledge is not enough: Intuition’s role in health risk 
perception and how psychophysiological measures help 
decipher it. #personalriskperception #PIBBS

Key Points

•• Understanding the mechanisms of risk perception and 
risk communication is vital to policymakers because 
it provides the basis for scientifically sound and 
empirically testable public health campaigns.

•• Psychophysiological science, which brings together 
psychology and physiology, provides theories, para-
digms, and methods to examine health risk perception 
and effects of health and risk communication.

•• Event-related brain potentials (ERPs; usually mea-
sured with surface electrodes) can tap into fast and 
affect-based processes related to risk perception.

•• Functional magnetic resonance imaging (fMRI) can 
reveal responses to health messages on a moment-to-
moment basis and simultaneously from hundreds of 
brain regions.

•• The brain-as-predictor approach strives to link micro-
level message effects to subsequent outcomes within 
the same individuals or at larger scales.

•• Psychophysiology research has rich potential to better 
understand risk perception and improve the effective-
ness of health and risk campaigns.

Introduction

Humans all over the world face a vast array of health risks. To 
date, the top risks for morbidity and mortality worldwide are 
tobacco use, high blood pressure, obesity, physical inactivity, 
and high blood glucose (World Health Organization, 2009, 
2014). Each of these risks is linked to individual behavior, 
and reducing such risk behaviors has thus become a central 
goal for public health. In fact, the question “How can we 
induce people to look after their health?” has recently emerged 
as the first question for the social sciences in the 21st century 
(Giles, 2011). Answering this question obviously depends on 
improving risk communication, which in turn depends on 
understanding how people perceive the risks they face. This 
review presents insights from psychophysiological research 
on health risk perception and communication. We first illus-
trate the role of intuitive processes for health risk perception 
and how psychophysiological research is contributing to 
progress in this field. We then discuss the difference between 
absolute and comparative personal risk perception and the 
relationship between risk perception and health behavior 
change. Next, we show how psychophysiological measures 
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can capture responses to health and risk messages and how 
such measures can link to subsequent behavioral effects. We 
end with implications for translation to policy and public 
health.

The Intuitive Nature of Risk Perception

Experts and laypersons differ in their approaches to risk. 
Experts define and quantify risk by focusing on two core ele-
ments: the probability of a hazardous event and the severity 
of the negative consequences. The perception of risk by lay-
persons, however, is more complex and is influenced by 
characteristics beyond probability and severity. A pioneering 
study presented people with 30 different hazards and asked 
them to evaluate these on several psychologically relevant 
attributes (Fischhoff, Slovic, Lichtenstein, Read, & Combs, 
1978). Risk evaluations revealed two dimensions, termed 
dread risk and unknown risk. The dread risk factor captures 
aspects such as perceived control over exposure to the risk, 
the degree of catastrophic consequences, or global ramifica-
tions. The unknown risk factor refers to the degree to which 
a risk is predictable, observable, and understood. This land-
mark study in risk perception demonstrates that people’s per-
ceptions and attitudes toward risk are influenced by 
characteristics beyond the Probability × Severity calculus.

The dread risk factor implies a role for affect (emotions 
and feelings) in risk perception. However, early risk perception 
research still focused heavily on cognitive assessments of 
probability and severity. This has now changed, and risk per-
ception research has taken a pronounced affective turn, 
which explains increased interest in psychophysiological 
approaches. For example, the risk-as-feelings model holds 
that feelings can influence risk perceptions independently 
from cognitive assessments (Loewenstein, Weber, Hsee, & 
Welch, 2001). Similarly, an intuitive mode of risk perception 
is based on feelings as opposed to a more analytic or delib-
erative mode (Slovic & Peters, 2006). In sum, recent models 
suggest that much of real-life risk perception uses rapid and 
largely automatic and association-based routines that are col-
lectively referred to as intuition (Hodgkinson, Langan-Fox, 
& Sadler-Smith, 2008). More analytic thinking about risk, by 
contrast, presumably depends on effortful and serial pro-
cesses (see also Loewenstein, O’Donoghue, & Bhatia, 2015; 
Pachur, Hertwig, & Steinmann, 2012).

Within this context, a psychophysiological approach 
offers theory, paradigms, and measures to tap into this intui-
tive mode of risk perception, which is generally difficult to 
study. One example of this approach in practice comes from 
a series of studies on intuitive risk perception that used a 
combination of event-related brain potentials (ERPs, mea-
sured with surface electrodes), functional magnetic reso-
nance imaging (fMRI), and self-reports to study risk 
perception in the domain of HIV. The starting point for this 
work were surprising interviews with HIV-positive people 

and focus groups in which people reported to “just know” 
whether a potential partner was risky or safe—even though 
they had no information about the person’s past sexual 
behavior (e.g., Gold, Skinner, Grant, & Plummer, 1991; M. 
L. Keller, 1993).

A lab paradigm examined this phenomenon, particularly 
to specify characteristics of intuition, such as the involve-
ment of affect (Slovic & Peters, 2006) and judgments 
“reached with little apparent effort, and typically without 
conscious awareness” (Hogarth, 2010, p. 339). Briefly, par-
ticipants saw portraits of unacquainted persons and recorded 
ERPs, the brain’s electrophysiological responses, which are 
ideally suited to capture fast and frugal processes that unfold 
within split seconds after an image enters the visual system. 
Across several studies, early (<300 ms) electrocortical dif-
ferences emerged between pictures of individuals deemed 
risky or safe in terms of HIV risk (Renner, Schmälzle, & 
Schupp, 2012; Schmälzle, Renner, & Schupp, 2012; 
Schmälzle, Schupp, Barth, & Renner, 2011). This speed pre-
cludes systematic reasoning about health risk and thus sup-
ports the notion of intuitive processing (e.g., Slovic & Peters, 
2006).

Moreover, ERP differences between intuitively risky and 
safe partners emerged at the level of the late positive potential 
(LPP), an ERP component known to respond to affective sig-
nificance (Schupp, Flaisch, Stockburger, & Junghöfer, 2006). 
Portraits of risky-looking individuals prompted larger LPPs, 
which may serve as an intuitive alarm signal for attentive pro-
cessing (Renner et al., 2012; Schmälzle et al., 2012; Schmälzle 
et al., 2011). This interpretation was corroborated by a subse-
quent fMRI study that found increased activation toward indi-
viduals later judged as risky within the saliency network, a set 
of brain regions involved in attention and relevance detection 
(Häcker, Schmälzle, Renner, & Schupp, 2015).

Perhaps the strongest support for the intuitive nature of 
HIV risk perception comes from work that exposed partici-
pants to the pictures and recorded neural data without men-
tioning HIV risk (Häcker et al., 2015; Schmälzle et al., 2011). 
Neural responses were then categorized based on subse-
quently collected ratings of HIV risk; this implicit condition 
revealed similar neural differences to the explicit condi-
tion—using both ERP and fMRI recordings. This suggests 
that processes associated with risk unfold spontaneously, 
another defining feature of intuition. In sum, this work illus-
trates how psychophysiological approaches can help to deci-
pher the hidden mechanisms of intuitive risk perception.

Personal Risk Perception

From a public health perspective, people not only need to be 
aware of a health risk (“There is a new virus, and it poses a 
health risk”), but they also need to feel that they are person-
ally at risk (“I may catch the virus myself”). This distinction 
is the gap between general and personal risk perception. 
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Personal risk perception can be either absolute or compara-
tive (Renner & Schupp, 2011; Shepperd, Waters, Weinstein, 
& Klein, 2015; Weinstein, 1980). Absolute risk perception 
refers to estimates of risk that range from low to high—typi-
cally probed via questions such as “What is the likelihood 
that you will get cancer?” Comparative risk perceptions, on 
the contrary, assess how people estimate their risk relative to 
the risk others face (e.g., “What do you think is your chance 
of getting cancer compared with the average person of your 
age?”). The following two case studies illustrate how the 
psychophysiology toolkit advances understanding these 
types of personal risk perception.

First, absolute personal risk perception interacts with the 
reception of risk-related communication. During the 
2009/2010 outbreak of the H1N1 virus, a study (Schmälzle, 
Häcker, Renner, Honey, & Schupp, 2013) recorded brain 
activity, while participants viewed an entire real-world TV 
documentary about H1N1. Participants were selected based on 
their preexisting perceptions of the risk posed by H1N1. 
Neural responses to the H1N1-documentary within the so-
called saliency network (Menon & Uddin, 2010) differed 
according to recipients’ absolute H1N1 risk perceptions for 
themselves. In particular, viewers with high risk perceptions 
regarding H1N1 shared with each other more strongly aligned 
neural time courses during viewing, most notably within the 
anterior cingulate gyrus (ACC), a region associated with self-
related processing (Schmitz & Johnson, 2007), discrepancy 
detection (Botvinick, Braver, Carter, Barch, & Cohen, 2001) 
and the appraisal of threatening information (Mechias, Etkin, 
& Kalisch, 2010). This constitutes evidence for a message–
receiver interaction, for example, that the same message 
prompted different responding based on the preexisting risk 
perception among recipients. Overall, this approach is promis-
ing to study responses to real-world health and risk communi-
cation in a realistic way. The methods expose interactions 
between risk perception and incoming risk information that 
are likely to have substantial consequences in real-world set-
tings (e.g., climate change risk, polarized public opinion during 
emerging health crises, or responses to pro- or counter-attitudinal 
health communication).

A second example concerns comparative personal risk 
perception, that is, when people compare their personal risk 
(e.g., your risk to get cancer vs. that of others). Studies on 
comparative risk perception reveal that people tend to com-
pare themselves too favorably against others. This unrealis-
tic optimism (Weinstein, 1980) appears for many risks and 
across all age-groups and education levels (Renner, Gamp, 
Schmälzle, & Schupp, 2015; Shepperd et al., 2015). To 
uncover the biological roots of this pervasive phenomenon, 
participants estimated the likelihood of encountering risks in 
their lifetime, such as becoming victim of burglary or getting 
Alzheimer’s disease, while capturing brain responses using 
fMRI (Sharot, Korn, & Dolan, 2011). Next, they saw the 
average frequency of the risky events. In the critical 

condition, participants again estimated the likelihood of the 
same risk events. Comparing pre- and postfeedback esti-
mates of risk probability showed an asymmetric pattern of 
change for over- and underestimation of risks: People 
updated their belief when they received desirable feedback 
(when they had overestimated the risk) to a greater degree 
compared with when they received bad news (when they had 
underestimated risk). This selectivity in updating beliefs was 
related to activity in the inferior frontal gyrus, a region impli-
cated in linking evidence to prior knowledge and prediction-
error coding (Sharot & Garrett, 2016). Together with related 
work on unrealistic optimism (Sharot et al., 2011; Sharot, 
Riccardi, Raio, & Phelps, 2007), this study demonstrates the 
potential of psychophysiological methods and paradigms to 
understand comparative risk perception.

The Relationship Between Risk 
Perception and Health Behavior

Risk perception, as a crucial factor driving protective health 
behaviors (Slovic, 1964), is key in virtually all major health 
behavior theories (Portnoy, Ferrer, Bergman, & Klein, 2014; 
Renner & Schwarzer, 2003; Weinstein, 2003). In general, 
these frameworks imply that an authentic perception of per-
sonal risk signals the need to take protective action and thus 
catalyzes behavior change (Loewenstein et al., 2001; Renner 
et al., 2015; Weinstein, 2003). This behavior motivation 
hypothesis is supported by a recent meta-analysis: Heightening 
risk appraisals in experiments had robust effects on inten-
tions and behavior (Sheeran, Harris, & Epton, 2014). Moreover, 
the effect of heightened risk perceptions on behavior was 
partially mediated by intentions, but there was still a signifi-
cant direct effect of risk perception. Thus, risk perception 
may influence behavior through pathways partially indepen-
dent from reflective thought and intentional behavior (cf. 
Marteau, Hollands, & Fletcher, 2012). As in our previous 
examples, advances in psychophysiological measurement, 
particularly the recently proposed brain-as-predictor approach 
(Berkman & Falk, 2013), are promising to illuminate the hid-
den pathways between health risk messages, risk perception, 
and behavior.

The brain-as-predictor approach uses brain activity, cap-
tured at the moment of receiving health messages, to forecast 
subsequent changes in health behaviors (Berkman & Falk, 
2013). In one of the first studies, the neural response to tai-
lored smoking cessation messages predicted reductions in 
smoking behavior at follow-up intervals (Chua et al., 2011). 
Activation of a brain region involved in self-related process-
ing (dorsomedial prefrontal cortex) to the smoking cessation 
messages predicted later successful quitting.

Other health domains—including smoking, sunscreen 
use, and contexts outside the health domain (Berns & Moore, 
2012; Genevsky & Knutson, 2015)—show similar results. 
For example, sunscreen use increased after viewing health 
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ads promoting use of sunscreen; the ad-evoked neural 
responses in an a-priori defined region of interest in the 
medial prefrontal cortex predicted increased sunscreen use at 
follow-up (Falk, Berkman, Mann, Harrison, & Lieberman, 
2010). Furthermore, the findings replicated for smoking ces-
sation (Falk, Berkman, Whalen, & Lieberman, 2011) and 
increased physical activity (Cooper, Bassett, & Falk, 2017). 
Overall, the brain-as-predictor approach (Berkman & Falk, 
2013; Falk, Cascio, & Coronel, 2015; Weber, Huskey, 
Mangus, Westcott-Baker, & Turner, 2015) links neural pro-
cesses during health-risk-information exposure to subse-
quent behavior outside the scanner, with key theoretical and 
translational implications (Gabrieli, Ghosh, & Whitfield-
Gabrieli, 2015).

Effective Health and Risk 
Communication

Health and risk communication—like all communication 
activities—varies on a continuum between informing and 
influencing (Atkin & Rice, 2001; Fischhoff, 2012; Renner, 
Gamp, & Thaler, 2017). On the information side of the con-
tinuum, health risk communication can target the general pub-
lic to make them aware of existing health risks in their lives or 
environment. One example is package inserts, which provide 
extensive, yet largely neutral information. Another example is 
conventional awareness campaigns. On the influence side of 
the continuum, health and risk communication can also strive 
to increase risk perception to promote protective or preventive 
behavior (Wakefield, Loken, & Hornik, 2010).

To achieve this, messages may provide numerical infor-
mation. However, numerical risk communication is very 
complex because different numerical formats vary greatly in 
understandability and in what people take away from them 
(e.g., presenting risks as frequencies or as odds; Gigerenzer, 
2007; Rakow, Heard, & Newell, 2015). Beyond numbers, 
communicators may use pictures (e.g., poster messages or 
graphic warning labels) and narratives (e.g., in public service 
announcements) to promote fear and negative emotions more 
broadly in an effort to accentuate felt risk (Witte & Allen, 
2000). Well-designed campaigns typically provide a clear 
message of the desired target behavior and use mini-stories 
and other engaging formats to increase personal risk percep-
tion and make the message salient and believable (P. A. Keller 
& Lehmann, 2008; Kim, Bigman, Leader, Lerman, & 
Cappella, 2012).

While many factors contribute to the effectiveness of 
mass media health messages, a core ingredient of effective 
campaigns is their ability to address recipients in a personal 
and motivationally relevant way (Burnkrant & Unnava, 
1995; Dillard & Peck, 2000; Tannenbaum et al., 2015). 
Neuroimaging measures have potential to reveal how such 
messages literally “get under the skin” and catch on in the 
brains of their recipients. Many variables matter for health 
messages, including argument strength (AS; a measure of the 

overall quality of the arguments within a message; Zhao, 
Strasser, Cappella, Lerman, & Fishbein, 2011), message sen-
sation value (MSV; a construct related to sensory facets and 
the novelty and emotional arousal value of a message, 
Palmgreen, Stephenson, Everett, Baseheart, & Francies, 
2002), and perceived message effectiveness (PME; that is, 
whether an ad/public service announcement is seen as pow-
erful, believable, or convincing; Dillard, Weber, & Vail, 
2007; Yzer, LoRusso, & Nagler, 2015). Health messages 
varying on these dimensions differentially activated medial 
prefrontal cortex, precuneus, anterior cingulate, and insular 
regions during the reception of naturalistic risk and health 
information—presumed to reflect the processing of self-rel-
evant and emotionally salient stimuli (Langleben et al., 2009; 
Ramsay, Yzer, Luciana, Vohs, & MacDonald, 2013; Wang 
et al., 2013; Weber et al., 2015).

These studies mainly focused on overall activity levels 
within specific regions in response to the message. Another 
approach assesses the “collective grip” that messages exert 
on the brains of their recipients over time during the recep-
tion process. In a recent study, young adults—a key target 
group for alcohol prevention—watched more and less effec-
tive audiovisual health messages selected from a large sam-
ple of real-life anti-alcohol campaigns (Imhof, Schmälzle, 
Renner, & Schupp, 2017). More effective anti-alcohol mes-
sages commanded more similar neural responses, particu-
larly in dorsomedial prefrontal cortex, insulae, and precuneus, 
which have been linked to narrative engagement, self-rele-
vance, and attention toward salient stimuli. This suggests 
that effective messages were more successful in getting the 
brains of audience members to tune in to the message and 
thus seem to have deeper neural reach, compared with less 
effective messages.

When combined with the brain-as-predictor approach, 
these neural measures of audience engagement appear par-
ticularly promising to link micro-level message effects within 
test audiences to larger scale outcomes, such as the popula-
tion-level response to campaigns. Indeed, activity in the 
medial prefrontal cortex, captured in a relatively small neural 
focus group during exposure to different anti-smoking cam-
paigns, predicted the success of the campaigns at the national 
level, measured as call volume to the National Cancer 
Institute’s Smoking Quit-Line campaigns (Falk, Berkman, & 
Lieberman, 2012). Overall, the emerging field of neuroimag-
ing of health messages holds great potential to create new 
theoretical insights and have translational implications for 
formative and evaluative stages of research, which can in turn 
inform public policy about viable approaches (Falk, 2010).

Conclusions and Policy Implications

The behavior of individuals strongly influences their health, 
and how they perceive their risks affects whether they will be 
motivated to look after their health. This is good news 
because it provides an opportunity for leveraging the large 
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array of modifiable risk behaviors to achieve substantial 
improvements in public health in the 21st century. One chal-
lenge, however, is that the majority of health-relevant behav-
iors is driven by automatic or intuitive processes (Marteau 
et al., 2012). By and large, these processes remain insuffi-
ciently understood, and this limits the effectiveness of health 
messages and related interventions to improve health and 
prevent disease.

Within this context, psychophysiological science pro-
vides theories, paradigms, and measurements to gain deeper 
insight into the operations of these automatic processes and 
their relationship to deliberate processes that influence 
health-related cognitions and behaviors. Despite this great 
potential, however, a number of issues may impede progress. 
First, the human brain is far from being understood, and psy-
chological interpretations of physiological responses are 
fraught with challenges and caveats (Poldrack, 2006). 
Second, as in all science, the field needs to address reproduc-
ibility, reliability, and generalizability (Button et al., 2013; 
Poldrack et al., 2017), to make the underlying science sound 
and maximally useful for more applied purposes such as pre-
dictive modeling and biomarker identification (Abraham 
et al., 2014; Shen et al., 2017).

From a broader perspective, an obvious policy implication 
is the need for systematic research programs that develop, 
fine-tune, and test paradigms and tools to translate them into 
applied settings (Bradley, 2017). One example for this is the 
“Test, Learn, Adapt” approach by the U.K. government’s 
Behavior Insights Team, which strives to put the effectiveness 
of public policies to test via clinical trials (Cabinet Office and 
Behavioural Insights Team, 2012). A related example more 
specifically geared toward psychophysiology is the recent 
Science of Behavior Change (SOBC) funding framework by 
the NIH’s Common Fund (Riddle & Ferrer, 2015). In brief, 
the program supports an experimental medicine strategy for 
understanding behavior change by identifying, measuring, 
and finally influencing hypothesized target mechanisms that 
are likely to play a role for specific health behaviors. Finally, 
an example in a field with obvious policy relevance is the 
Tobacco Regulatory Science Program (TRSP), which coordi-
nates collaborative efforts across NIH and FDA and funds 
research, including psychophysiological work, that informs 
tobacco regulatory policy (e.g., Lochbühler et al., 2016).

Biological measures, particularly neuroimaging, provide 
unique opportunities to contribute to these large-scale 
research frameworks by providing new means to tap into the 
mechanisms of intuitive risk perception, reveal inter-individ-
ual differences in personal risk, and predict behavior change 
at the individual and population level. Incorporating the tools 
of psychophysiology in these long-term research programs 
promises to further unpack and demystify the intuitive, auto-
matic processes that underlie many of our health behaviors 
and thereby spur the development of new or more effective 
interventions to improve public health.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: H. T. S. 
and B. R. were supported in part by the German Research 
Foundation [DFG, FOR 2374].

References

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, 
A., Kossaifi, J., . . . Varoquaux, G. (2014). Machine learning for 
neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 
8, Article 14.

Atkin, C. K., & Rice, R. E. (2001). Theory and principles of media 
health campaigns. In R. E. Rice, & C. K. Atkin (Eds.), Public 
communication campaigns (pp. 49-67). Thousand Oaks, CA: 
SAGE.

Berkman, E. T., & Falk, E. B. (2013). Beyond brain mapping: 
Using neural measures to predict real-world outcomes. Current 
Directions in Psychological Science, 22, 45-50.

Berns, G. S., & Moore, S. E. (2012). A neural predictor of cultural 
popularity. Journal of Consumer Psychology: The Official 
Journal of the Society for Consumer Psychology, 22, 154-160.

Botvinick, M. M., Braver, T. S., Carter, C. S., Barch, D. M., & 
Cohen, J. D. (2001). Conflict monitoring and cognitive control. 
Psychological Review, 108, 624-652.

Bradley, M. M. (2017). The science pendulum: From programmatic 
to incremental-and back? Psychophysiology, 54, 6-11.

Burnkrant, R. E., & Unnava, H. R. (1995). Effects of self-refer-
encing on persuasion. The Journal of Consumer Research, 22, 
17-26.

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, 
J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: 
Why small sample size undermines the reliability of neurosci-
ence. Nature Reviews Neuroscience, 14, 365-376.

Cabinet Office and Behavioural Insights Team. (2012). Test, learn, 
adapt: Developing public policy with randomised controlled 
trials. GOV.UK. Retrieved from https://www.gov.uk/govern-
ment/publications/test-learn-adapt-developing-public-policy-
with-randomised-controlled-trials

Chua, H. F., Ho, S. S., Jasinska, A. J., Polk, T. A., Welsh, R. C., 
Liberzon, I., & Strecher, V. J. (2011). Self-related neural 
response to tailored smoking-cessation messages predicts quit-
ting. Nature Neuroscience, 14, 426-427.

Cooper, N., Bassett, D. S., & Falk, E. B. (2017). Coherent activity 
between brain regions that code for value is linked to the malle-
ability of human behavior. Scientific Reports, 7, Article 43250.

Dillard, J. P., & Peck, E. (2000). Affect and persuasion. 
Communication Research, 27, 461-495.

Dillard, J. P., Weber, K. M., & Vail, R. G. (2007). The relationship 
between the perceived and actual effectiveness of persuasive 
messages: A meta-analysis with implications for formative cam-
paign research. The Journal of Communication, 57, 613-631.

Falk, E. B. (2010). Communication neuroscience as a tool for 
health psychologists. Health Psychology: Official Journal of 

https://www.gov.uk/government/publications/test-learn-adapt-developing-public-policy-with-randomised-controlled-trials
https://www.gov.uk/government/publications/test-learn-adapt-developing-public-policy-with-randomised-controlled-trials
https://www.gov.uk/government/publications/test-learn-adapt-developing-public-policy-with-randomised-controlled-trials


6 Policy Insights from the Behavioral and Brain Sciences 00(0)

the Division of Health Psychology, American Psychological 
Association, 29, 355-357.

Falk, E. B., Berkman, E. T., & Lieberman, M. D. (2012). From 
neural responses to population behavior: Neural focus group 
predicts population-level media effects. Psychological Science, 
23, 439-445.

Falk, E. B., Berkman, E. T., Mann, T., Harrison, B., & Lieberman, 
M. D. (2010). Predicting persuasion-induced behavior change 
from the brain. Journal of Neuroscience, 30, 8421-8424.

Falk, E. B., Berkman, E. T., Whalen, D., & Lieberman, M. D. (2011). 
Neural activity during health messaging predicts reductions in 
smoking above and beyond self-report. Health Psychology: 
Official Journal of the Division of Health Psychology, 
American Psychological Association, 30, 177-185.

Falk, E. B., Cascio, C. N., & Coronel, J. C. (2015). Neural pre-
diction of communication-relevant outcomes. Communication 
Methods and Measures, 9, 30-54.

Fischhoff, B. (2012). Communicating risks and benefits: An evidence 
based user’s guide. Washington, DC: Government Printing Office.

Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S., & Combs, B. 
(1978). How safe is safe enough? A psychometric study of atti-
tudes towards technological risks and benefits. Policy Sciences, 
9, 127-152.

Gabrieli, J. D. E., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). 
Prediction as a humanitarian and pragmatic contribution from 
human cognitive neuroscience. Neuron, 85, 11-26.

Genevsky, A., & Knutson, B. (2015). Neural affective mechanisms 
predict market-level microlending. Psychological Science, 26, 
1411-1422.

Gigerenzer, G. (2007). Gut feelings: The intelligence of the uncon-
scious. London: Penguin.

Giles, J. (2011). Social science lines up its biggest challenges. 
Nature, 470, 18-19.

Gold, R. S., Skinner, M. J., Grant, P. J., & Plummer, D. C. (1991). 
Situational factors and thought processes associated with 
unprotected intercourse in gay men. Psychology & Health, 5, 
259-278.

Häcker, F. E. K., Schmälzle, R., Renner, B., & Schupp, H. T. 
(2015). Neural correlates of HIV risk feelings. Social Cognitive 
and Affective Neuroscience, 10, 612-617.

Hodgkinson, G. P., Langan-Fox, J., & Sadler-Smith, E. (2008). 
Intuition: A fundamental bridging construct in the behavioural 
sciences. British Journal of Psychology, 99(Pt. 1), 1-27.

Hogarth, R. M. (2010). Intuition: A challenge for psychological 
research on decision making. Psychological Inquiry, 21, 338-
353.

Imhof, M. A., Schmälzle, R., Renner, B., & Schupp, H. T. (2017). 
How real-life health messages engage our brains: Shared 
processing of effective anti-alcohol videos. Social Cognitive 
and Affective Neuroscience. Retrieved from https://doi.
org/10.1093/scan/nsx044

Keller, M. L. (1993). Why don’t young adults protect themselves 
against sexual transmission of HIV? Possible answers to a 
complex question. AIDS Education and Prevention: Official 
Publication of the International Society for AIDS Education, 
5, 220-233.

Keller, P. A., & Lehmann, D. R. (2008). Designing effective health 
communications: A meta-analysis. Journal of Public Policy & 
Marketing, 27, 117-130.

Kim, H. S., Bigman, C. A., Leader, A. E., Lerman, C., & Cappella, 
J. N. (2012). Narrative health communication and behavior 
change: The influence of exemplars in the news on intention 
to quit smoking. The Journal of Communication, 62, 473-492.

Langleben, D. D., Loughead, J. W., Ruparel, K., Hakun, J. G., 
Busch-Winokur, S., Holloway, M. B., . . . Lerman, C. (2009). 
Reduced prefrontal and temporal processing and recall of high 
“sensation value” ads. NeuroImage, 46, 219-225.

Lochbühler, K., Tang, K. Z., Souprountchouk, V., Campetti, D., 
Cappella, J. N., Kozlowski, L. T., & Strasser, A. A. (2016). 
Using eye-tracking to examine how embedding risk correc-
tive statements improves cigarette risk beliefs: Implications for 
tobacco regulatory policy. Drug and Alcohol Dependence, 164, 
97-105.

Loewenstein, G., O’Donoghue, T., & Bhatia, S. (2015). Modeling 
the interplay between affect and deliberation. Decisions, 2(2), 
Article 55.

Loewenstein, G., Weber, E. U., Hsee, C. K., & Welch, N. (2001). 
Risk as feelings. Psychological Bulletin, 127, 267-286.

Marteau, T. M., Hollands, G. J., & Fletcher, P. C. (2012). Changing 
human behavior to prevent disease: The importance of target-
ing automatic processes. Science, 337, 1492-1495.

Mechias, M.-L., Etkin, A., & Kalisch, R. (2010). A meta-analysis 
of instructed fear studies: Implications for conscious appraisal 
of threat. NeuroImage, 49, 1760-1768.

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, atten-
tion and control: A network model of insula function. Brain 
Structure & Function, 214, 655-667.

Pachur, T., Hertwig, R., & Steinmann, F. (2012). How do people 
judge risks: Availability heuristic, affect heuristic, or both? 
Journal of Experimental Psychology Applied, 18, 314-330.

Palmgreen, P., Stephenson, M. T., Everett, M. W., Baseheart, J. 
R., & Francies, R. (2002). Perceived message sensation value 
(PMSV) and the dimensions and validation of a PMSV scale. 
Health Communication, 14, 403-428.

Poldrack, R. A. (2006). Can cognitive processes be inferred from 
neuroimaging data? Trends in Cognitive Sciences, 10, 59-63.

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, 
P. M., Munafò, M. R., . . . Yarkoni, T. (2017). Scanning the 
horizon: Towards transparent and reproducible neuroimaging 
research. Nature Reviews Neuroscience, 18, 115-126.

Portnoy, D. B., Ferrer, R. A., Bergman, H. E., & Klein, W. M. P. 
(2014). Changing deliberative and affective responses to health 
risk: A meta-analysis. Health Psychology Review, 8, 296-318.

Rakow, T., Heard, C. L., & Newell, B. R. (2015). Meeting three 
challenges in risk communication. Policy Insights From the 
Behavioral and Brain Sciences, 2, 147-156.

Ramsay, I. S., Yzer, M. C., Luciana, M., Vohs, K. D., & MacDonald, 
A. (2013). Affective and executive network processing associ-
ated with persuasive antidrug messages. Journal of Cognitive 
Neuroscience, 25, 1136-1147.

Renner, B., Gamp, M., Schmälzle, R., & Schupp, H. T. (2015). 
Health risk perception. Retrieved from http://kops.uni-kon-
stanz.de/handle/123456789/31038

Renner, B., Gamp, M., & Thaler, S. (2017). Communication and 
educational measures. In RISKWA—Risk Management of 
Emerging Compounds and Pathogens in the Water Cycle: 
Handbook of good practice (pp. 67-83). Frankfurt a. M, 
Germany: DECHEMA.

https://doi.org/10.1093/scan/nsx044
https://doi.org/10.1093/scan/nsx044
http://kops.uni-konstanz.de/handle/123456789/31038
http://kops.uni-konstanz.de/handle/123456789/31038


Schmälzle et al. 7

Renner, B., Schmälzle, R., & Schupp, H. T. (2012). First impres-
sions of HIV risk: It takes only milliseconds to scan a stranger. 
PLoS ONE, 7(1), Article e30460.

Renner, B., & Schupp, H. (2011). The perception of health risks. In 
H. S. Friedman (Ed.), The Oxford handbook of health psychol-
ogy (pp. 637-665). New York: Oxford University Press.

Renner, B., & Schwarzer, R. (2003). Social-cognitive factors in 
health behavior change. In J. Suls, & K. A. Wallston (Eds.), 
Social psychological foundations of health and illness (pp. 
169-196). Malden, MA: Blackwell.

Riddle, M., & Ferrer, R. (2015). The science of behavior change. 
Association for Psychological Science, Observer, 28(9). 
Retrieved from https://www.psychologicalscience.org/
observer/the-science-of-behavior-change

Schmälzle, R., Häcker, F., Renner, B., Honey, C. J., & Schupp, 
H. T. (2013). Neural correlates of risk perception during real-
life risk communication. Journal of Neuroscience, 33, 10340-
10347.

Schmälzle, R., Renner, B., & Schupp, H. T. (2012). Neural corre-
lates of perceived risk: The case of HIV. Social Cognitive and 
Affective Neuroscience, 7, 667-676.

Schmälzle, R., Schupp, H. T., Barth, A., & Renner, B. (2011). 
Implicit and explicit processes in risk perception: Neural 
antecedents of perceived HIV risk. Frontiers in Human 
Neuroscience, 5, Article 43.

Schmitz, T. W., & Johnson, S. C. (2007). Relevance to self: A brief 
review and framework of neural systems underlying appraisal. 
Neuroscience and Biobehavioral Reviews, 31, 585-596.

Schupp, H. T., Flaisch, T., Stockburger, J., & Junghöfer, M. (2006). 
Emotion and attention: Event-related brain potential studies. 
Progress in Brain Research, 156, 31-51.

Sharot, T., & Garrett, N. (2016). Forming beliefs: Why valence 
matters. Trends in Cognitive Sciences, 20, 25-33.

Sharot, T., Korn, C. W., & Dolan, R. J. (2011). How unrealistic opti-
mism is maintained in the face of reality. Nature Neuroscience, 
14, 1475-1479.

Sharot, T., Riccardi, A. M., Raio, C. M., & Phelps, E. A. (2007). 
Neural mechanisms mediating optimism bias. Nature, 450, 
102-105.

Sheeran, P., Harris, P. R., & Epton, T. (2014). Does heightening 
risk appraisals change people’s intentions and behavior? A 
meta-analysis of experimental studies. Psychological Bulletin, 
140, 511-543.

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., 
Papademetris, X., . . . Constable, R. T. (2017). Using connec-
tome-based predictive modeling to predict individual behavior 
from brain connectivity. Nature Protocols, 12, 506-518.

Shepperd, J. A., Waters, E., Weinstein, N. D., & Klein, W. M. P. 
(2015). A primer on unrealistic optimism. Current Directions 
in Psychological Science, 24, 232-237.

Slovic, P. (1964). Assessment of risk taking behavior. Psychological 
Bulletin, 61, 220-233.

Slovic, P., & Peters, E. (2006). Risk perception and affect. Current 
Directions in Psychological Science, 15, 322-325.

Tannenbaum, M. B., Hepler, J., Zimmerman, R. S., Saul, L., 
Jacobs, S., Wilson, K., & Albarracín, D. (2015). Appealing to 
fear: A meta-analysis of fear appeal effectiveness and theories. 
Psychological Bulletin, 141, 1178-1204.

Wakefield, M. A., Loken, B., & Hornik, R. C. (2010). Use of mass 
media campaigns to change health behaviour. The Lancet, 376, 
1261-1271.

Wang, A.-L., Ruparel, K., Loughead, J. W., Strasser, A. A., Blady, 
S. J., Lynch, K. G., . . . Langleben, D. D. (2013). Content 
matters: Neuroimaging investigation of brain and behavioral 
impact of televised anti-tobacco public service announce-
ments. Journal of Neuroscience, 3, 7420-7427.

Weber, R., Huskey, R., Mangus, J. M., Westcott-Baker, A., & 
Turner, B. O. (2015). Neural predictors of message effec-
tiveness during counterarguing in antidrug campaigns. 
Communication Monographs, 82(1), 4-30.

Weinstein, N. (1980). Unrealistic optimism about future life events. 
Journal of Personality and Social Psychology, 39, 806-820.

Weinstein, N. (2003). Exploring the links between risk perceptions 
and preventive health behavior. In J. Suls, & K. A. Wallston 
(Eds.), Social psychological foundations of health and illness 
(Vol. 22, p. 53). Malden, MA: Blackwell.

Witte, K., & Allen, M. (2000). A meta-analysis of fear appeals: 
Implications for effective public health campaigns. Health 
Education & Behavior: The Official Publication of the Society 
for Public Health Education, 27, 591-615.

World Health Organization. (2009). Global health risks: Mortality 
and burden of disease attributable to selected major risks. 
Retrieved from http://www.who.int/healthinfo/global_burden_
disease/global_health_risks/en/

World Health Organization. (2014). World health statistics 2014. 
Retrieved from http://www.who.int/gho/publications/world_
health_statistics/2014/en/

Yzer, M., LoRusso, S., & Nagler, R. H. (2015). On the concep-
tual ambiguity surrounding perceived message effectiveness. 
Health Communication, 30, 125-134.

Zhao, X., Strasser, A., Cappella, J. N., Lerman, C., & Fishbein, 
M. (2011). A measure of perceived argument strength: 
Reliability and validity. Communication Methods and 
Measures, 5, 48-75.

https://www.psychologicalscience.org/observer/the-science-of-behavior-change
https://www.psychologicalscience.org/observer/the-science-of-behavior-change



