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Abstract: Event-related potentials (ERPs) capture neural responses to media stimuli with a split-second resolution, opening the door to
examining how attention modulates the reception process. However, the relatively high cost and difficulty of incorporating ERP methods have
prevented broader adoption. This study tested the potential of a new mobile, relatively easy-to-mount, and highly affordable device for
electroencephalography (EEG) measurement – the Muse EEG system – combined with a free, open-source platform for ERP recording and
analysis. Specifically, we compared ERPs with affective visual stimuli – representative of the kind of engaging content that pervades modern
social media. Our results confirm that the Muse system provides robust visual ERPs, highly reliable across two samples. Although there was no
difference between ERPs to moderately positive and neutral stimuli in the expected time windows (200–300 ms, 400–600 ms), an exploratory
analysis provided some evidence for differential processing of positive versus neutral images at the right temporal sensor site (TP10).
Additionally, a compliance-gaining manipulation in participant instructions significantly improved data quality. These results support the use
of the Muse EEG system in large-scale studies examining brain responses to screen media. They also suggest an easy social influence tactic
that can enhance data quality as communication neuroscience is scaled up. The availability of a mobile EEG system for 250 USD makes it
possible to incorporate neuroimaging into various communication paradigms beyond visual communication.
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Recent studies have demonstrated the potential of neural
measures to elucidate reception mechanisms, which repre-
sent the critical link between media content and media
effects (Falk et al., 2015; Huskey et al., 2020; Schmälzle
& Grall, 2020a; Weber et al., 2008). However, while neural
measures come with many desirable properties, several
roadblocks impede their wider adoption (Schmälzle &
Meshi, 2020). In particular, the high cost for equipment
limits accessibility, and the slow pace with which data are
recorded from individuals makes it difficult to acquire large
samples.

Here we examine a new approach to overcome these
roadblocks via a low-cost, mobile, and comparatively
easy-to-mount device for electroencephalography (EEG)
measurement. Specifically, we validate the device in the
context of an event-related potential (ERP) study of brain

responses to affective images, such as the kind of messages
shared on popular social media platforms like Instagram.
Moreover, the experimental and analytic pipeline is openly
available to encourage reproducibility efforts and facilitate
adoption (https://github.com/nomcomm/MediaNeuroscience
OnAShoestring_JMP).

We begin by reviewing relevant ERP research on moti-
vated attention. Next, we discuss barriers to using ERP
methods in media psychology and present a new system
that enables neuroscience studies to be conducted at low
cost but with high potential for scalability. We then describe
an ERP study to test the system. Moreover, we introduce a
compliance-gaining manipulation for the instructions given
to participants to optimize data quality in large-scale
studies.

The Potential of ERPs for Examining Rapid
Brain Responses to Media

ERPs are measures derived from human EEG, which
records real-time changes in the brain’s electrical activity
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from sensors placed on the head (Luck, 2005). By averag-
ing epochs around experimental events (e.g., the 1,000 ms
following stimulus onset), one can derive the ERP. This
general procedure is illustrated in Figure 1. Depending on
the paradigm, the ERP waveforms contain specific compo-
nents characterized by the features amplitude, polarity,
latency, and topography (Luck, 2005).

ERPs have a long history and are still among the most
widely used methods for examining cognitive processes

through a neurophysiological lens (Biasiucci et al., 2019;
Cacioppo et al., 2007; Rugg & Coles, 1995; Schmälzle &
Grall, 2020b). Specific ERP components are associated with
higher cognitive and affective computations, such as expec-
tancy or affective evaluation (Cacioppo et al., 1993; Schupp
et al., 2004). Because ERPs are directly related to electrical
neural activity, which can be measured instantaneously, the
method enables researchers to precisely interrogate the
timing of internal mental events.

Figure 1. Illustration of the visual message paradigm with mobile EEG recording. Top row: Participants view a stream of emotional and neutral
IAPS images while the Muse device records continuous EEG data. Triggers marking image onset and image type (mildly positive vs. neutral) are
sent and integrated with the four-channel EEG recordings for subsequent analysis of event-related brain potentials (ERP). Bottom row: Locations
of EEG sensors on the Muse device and illustration of idealized ERP waveforms at one sensor and mean amplitude measurements in selected
time windows. EEG = electroencephalography. IAPS = International Affective Picture System.
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ERP Studies of Motivated Attention

The degree of attention a stimulus attracts is a crucial vari-
able in media psychology and communication more
broadly, as this will affect subsequent outcomes (McGuire
et al., 2001). Indeed, attention has long played a major role
in theories of message processing and persuasion, such as
the AMIE (activation model of information exposure),
LC4MP (limited capacity model of motivated mediated
message processing), or the ELM (elaboration likelihood
model) (Donohew et al., 1980; Lang, 2009; Petty &
Cacioppo, 1986). With this in mind, researchers would ben-
efit from methods capable of parsing reception processes
without interruption or interference, and neural measures
are prime candidates for this task. However, while a few
early studies used EEG to explore attention to messages
(Reeves et al., 1985; Thorson, 1990), the use of EEG in
media psychology has remained limited (Morey, 2018).

Within cognitive neuroscience, however, attention has
been intensely studied and the exquisite temporal resolu-
tion of ERPs yielded many insights into the operations of
selective attention (Chun et al., 2011; Luck et al., 2000;
Nobre & Kastner, 2014). Within this context, the work on
motivated attention is particularly relevant from a media
psychology perspective (Lang, 2009; Lang et al., 2013). In
brief, motivated attention refers to a form of selective atten-
tion commanded by motivationally relevant stimuli, such as
affective images or words that speak to motivational
variables based on evolutionary significance or intrinsic
personal relevance (Bradley, 2009; Lang et al., 1997).
Motivational influences, such as evolutionary significant
stimuli (e.g., food, sex, and danger), have been shown to
powerfully steer attention to stimuli and modulate ERP
responses (Ferrari et al., 2011; Hillyard & Anllo-Vento,
1998; Junghöfer et al., 2010; Schupp et al., 2004, 2014).

Several ERP components are reliably associated with
motivational influences on attention, particularly in studies
of affective vision (Schupp et al., 1997, 2003, 2004). For
the sake of the present study, we limit the discussion here
to the two most prominent ERP components associated
with motivated attention: the early posterior negativity
(EPN) and the late positive potential (LPP; Schupp et al.,
2006). The EPN and LPP are different components, both
assessed by subtracting ERPs in response to emotionally
arousing images from ERPs toward neutral images. The
EPN emerges as relative negativity over occipitotemporal
sites between approximately 200–300 ms after stimulus
onset, and the LPP emerges as a centroparietal positivity
between approximately 400–600 ms. Functionally, the
EPN is linked to an early tagging for prioritized processing,
while the LPP is linked to the ignition of higher-order cell
assemblies related to conscious access and relevance eval-
uation (Schupp et al., 2006).

Low-Cost, Mobile EEG Devices for
Conducting Neuroscience Studies

Neural measures in general hold promise for media psy-
chology because they make it possible to study the brain’s
response to screen media on a moment-to-moment basis,
without interruption or overt questioning. ERP methods
are very well-suited to uncover the split-second response
to affective images, which are extremely common in mod-
ern media (e.g., images of disasters in newspaper websites,
affective content on Instagram, etc.). Unfortunately, there
are three key barriers when it comes to incorporating neu-
roscience methods into communication and media research
(Schmälzle & Meshi, 2020).

The first barrier is cost: The cost for a standard research
EEG system with 64–256 channels lies between 30,000
and 100,000 USD, excluding other costs, such as setting
up a lab. While these costs are considerably lower than
those for functional magnetic resonance imaging (fMRI),
they are high enough to place EEG methodology out of
reach of many researchers. The second barrier relates to
the ease and speed of data acquisition: Historically, mount-
ing an EEG net on a participant’s head required substantial
effort and time, and participants could only be measured
one at a time. Beyond burdensome setup procedures,
another bottleneck is the number of available EEG systems
(usually one, due to the cost). As a result, a typical EEG lab
will rarely record data from more than two to four partici-
pants per day on average. Comparatively, this is far less
than other methods can output. The last barrier is the
intangibles needed to conduct reliable research with neuro-
science methods. Traditionally, those employing neu-
roimaging underwent thorough training in neuroscience
theory, data collection, and analysis.

In sum, the relatively high cost, low speed/scalability of
neuroimaging, and the intangible skills and resources
needed represent three key barriers that prevent the wider
use of ERP methods in media research. Over the past dec-
ade, however, several companies made efforts to overcome
these barriers. As of 2019, there are now four companies
offering EEG devices under 1,000 USD and another nine
that offer devices under 25,000 USD (Farnsworth, 2019).
By lowering costs, increasing mobility, and improving
ease-of-use, these devices make neurophysiological mea-
sures more available to other fields.

One specific EEG system that holds promise for use in
media research is the Muse device from Interaxon Inc.
(SCR_014418). It is a small device with four sensors –

AF7, AF8, TP9, and TP10 – and the Fpz electrode to serve
as the reference (see Figure 1). The device is low-cost (250
USD), transmits data through a Bluetooth connection, and
can be set up within minutes. While it has not been primar-
ily developed for research, its dry electrodes and amplifier
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specs can be considered adequate for EEG research. Fur-
thermore, with it being designed for commercial purposes,
the price and comparative ease-of-use make it one of the
most viable EEG devices in its category.

In fact, the potential of the Muse for research has already
been tested in prior work (Krigolson et al., 2017, 2021).
Results showed that the Muse can detect two standard
ERP effects, an oddball and a reward-related component.
Krigolson et al. (2017) also compared the Muse ERP results
with a research-grade 64-sensor EEG system and demon-
strated very similar ERP results after re-referencing the
data to a common site. These results are encouraging, but
more testing is needed to certify the use of the Muse device
in research settings that are of more interest to media psy-
chologists. Moreover, Krigolson and colleagues (2017, 2021)
used a custom Matlab-based platform to obtain the data
from the Muse, which requires a Matlab license and techni-
cal expertise. Recently, an open-source tool has become
available that allows EEG data to be recorded more easily
(BlueMuse; Kowaleski, 2022), and a suite of open-source
EEG paradigms, called “EEG notebooks,” has been devel-
oped. The EEG notebooks are a collection of classic EEG
experiments that combine the popular PsychoPy system
(Peirce & MacAskill, 2018) with the Muse device (Griffiths
et al., 2020), and they integrate stimulus presentation, data
collection, and data analysis within one relatively easy-to-
use system. With this setup, it would be possible to conduct
ERP studies with a budget of 250 USD and freely available
software. Overall, the Muse system and the EEG notebooks
show promise as a low-cost and scalable method to exam-
ine the reception and processing of media, especially visual
images. However, further feasibility testing and validation
are necessary.

The Current Study

In this study, we propose to expand the scope of the Muse
system into the domain of affective image processing, a
commonmessage format in today’s social media communi-
cation environment (e.g., Instagram, Pinterest). In brief, par-
ticipants will view images from the International Affective
Picture System (IAPS; Lang et al., 2008), which has been
used in many ERP studies of selective attention. Thus, this
study will not use real social media images, although this
would be an obvious next step, but instead employ IAPS
images that have been used in hundreds of psychophysio-
logical studies, such that the expected ERP effects are well
understood. However, to focus on the kind of content that
is more regularly encountered during day-to-day web
browsing and social media activities, we selected IAPS
images that have either moderately positive or neutral con-
tent, excluding highly emotionally evocative IAPS images,
such as mutilations and erotica (see Figure 1). Importantly,

this builds on work from Krigolson and colleagues (2017,
2021), as our study moves from classic ERP paradigms to
naturalistic stimuli that resemble social media messages.

A large body of ERP research on motivated attention has
consistently demonstrated that affectively valenced images
prompt differential ERP responses (Schupp et al., 2006).
Accordingly, we expect a difference between ERPs in
response to emotional versus neutral images, particularly
in the range of EPN and LPP components. We note, how-
ever, that previous ERP findings were established under dif-
ferent conditions. First, as stated earlier, seminal studies
employed strong affect manipulations by comparing ERPs
toward erotica or mutilations with the ERPs toward neutral
images, whereas a comparison of moderately arousing pos-
itive versus neutral images is a less impactful manipulation.
Second, studies that used high-density systems with 128
and 256 channels (and average reference montages) differ
markedly from the Muse’s sensor layout with only two fron-
tal and two temporal sensors and a recording reference at
location Fpz. Therefore, we can expect that the recorded
ERP will differ in terms of waveform shape and topography,
although a differential effect between positive arousing and
neutral images should still emerge (Luck, 2005). In sum,
this study will assess the utility of the Muse device by test-
ing the following hypothesis:

Hypothesis 1 (H1): There will be a discernible differ-
ence (comparable to previously reported findings
using high-density EEG systems) between event-
related potentials (ERPs) for the positive versus the
neutral images.

Our next goal, a practical one, is to test whether a compli-
ance-gaining manipulation improves the quality of acquired
EEG data. The applied motivation for this goal lies in the
fact that EEG data are noisy and that even minor move-
ments create artifact signals that are multiple times larger
than the to-be-measured EEG signals (Luck, 2005). It is
common to reject approximately one third or a half of the
recorded epochs from any given dataset based on violations
of artifact-rejection criteria, such as implausible voltage,
blinks, or signal drifts. Thus, for the success of neuroscien-
tific studies, it is crucial that participants adhere to the
instructions to keep movement during the experiment at
a minimum. This can be a big request that participants
are unlikely to adhere to correctly and that requires a fair
amount of self-regulation.

Therefore, labs take great care in developing instructions,
but researchers tend to rely on tacit knowledge and intu-
itive strategies to instruct their participants. While many
labs use standardized procedures, they do not test and opti-
mize them to improve performance. If a simple compli-
ance-gaining request could improve data quality, this
could be useful to implement it in all future experiments.
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Aside from these practical considerations, there is also
much scientific merit in studying the role of instructions
as a communication topic (De Houwer et al., 2017). Clearly,
the way that instructions are delivered and worded can
affect participants’ behavior – a simple and ubiquitous
real-life instance of persuasion or compliance gaining.
The quality of EEG recordings depends on the participants’
behavior, such as artifacts due to body motion. In this vein,
EEG quality metrics might serve as an objective outcome of
a compliance-gaining instruction (Rhodes & Ewoldsen,
2013). In sum, these considerations lead to the second
hypothesis:

Hypothesis 2 (H2): Participants who receive an addi-
tional compliance-gaining request will exhibit a lower
data sample drop percentage compared with partici-
pants in a control group.

Method

Participants

A total of 70 undergraduates from a large university in
the Midwest US participated in the study. All participants
provided written consent to the study procedures, which
were approved by the local IRB. All participants had nor-
mal or corrected-to-normal vision and participated for
course credit. There were two internal subsamples, each
comprising 35 participants, allowing for internal split-half
comparison. The second subsample performed an addi-
tional target-counting task immediately after the image
viewing task, which will not be reported here. Furthermore,
the 70 participants were randomly assigned to the experi-
mental or control group for the compliance-gaining
manipulation.

Applying strict artifact screening criteria to exclude par-
ticipants whose EEG provided low-quality data (for details,
see next section and the online reproducibility package), we
excluded 23 participants, leaving a final sample of 47. This
number is high even compared with other neuroimaging
studies, which typically exclude about 10% of participants
for reasons related to data quality. However, we deliber-
ately chose to accept a higher attrition rate because we
wanted to let participants mount the EEG devices in a
mostly self-directed fashion and thus performed only min-
imal calibrations or corrections. The motivation behind this
decision was that we envision a trend toward the commod-
ification of EEG technology. This will make it possible to
conduct neurophysiological studies in settings other than
traditional lab environments (Krigolson et al., 2021). There-
fore, it was important to test the system under conditions
with low experimenter involvement.

Stimulus Material

The positive and neutral images were selected from the
IAPS based on their normative ratings of arousal and
valence, respectively (Lang et al., 2008). The class of “pos-
itive images” comprised 30 pictures selected to be moder-
ately arousing, positively valenced (Mvalence = 7.01, SD =
0.72; Marousal = 6.14, SD = 0.61, comprising nature and
sports scenery), and 30 “neutral images” that are rated as
low-arousing and neutral (Mvalence = 4.9, SD = 0.26;Marousal

= 2.55, SD = 0.35, images of household objects). Specifi-
cally, the IAPS numbers used were #1560, 1720, 5450,
5460, 5470, 5600, 5621, 5626, 5629, 5700, 5950, 7230,
7270, 7501, 7502, 7570, 8021, 8030, 8080, 8178, 8179,
8185, 8190, 8210, 8211, 8341, 8400, 8475, 8500, and
8501 (positive images), as well as #7000, 7004, 7009,
7010, 7020, 7025, 7030, 7031, 7035, 7038, 7040, 7041,
7050, 7060, 7090, 7100, 7110, 7140, 7150, 7161, 7175,
7185, 7187, 7217, 7224, 7233, 7235, 7490, 7491, and 7705
(neutral images).

Experimental Task

Upon arrival, participants consented to participation and
received a verbal description regarding the EEG device
and how to put it on. The instruction on how to mount
the headset and the experimenter setting up the stimulus
took less than 2 min. Participants were told that this study
was a simple image-viewing task, which was broken up into
two brief 2-min viewing sessions. Upon the completion of
the setup, participants in both conditions received the same
instruction for viewing session 1: “Please sit still and focus
on the middle of the screen.” The presentation was con-
trolled by a PsychoPy script (Peirce & MacAskill, 2018),
which presented each image for 200 ms with an intertrial
interval that varied randomly between 800 and 1,000 ms.

After Session 1, the participants were instructed to relax
while the integrity of the signal stream was checked again.
The experimental conditions were introduced before the
second viewing session, where the instructions were varied
by condition. Based on whether participants were in the
experimental or control group for the upcoming compli-
ance-gaining test, they received one of two instructions:
Participants in the control group received the same instruc-
tion as in Session 1. Participants in the experimental group,
however, received the instruction: “It is imperative to focus
on the middle of the screen. Please relax and limit all body,
head, and facial movements. If possible, minimize the
amount that you blink while you view another brief presen-
tation. Any movement can affect the signal and we hope to
obtain the best results possible during this video.” This
instruction served as the more intensive request for the
experimental group, whereas both groups received the
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same instruction for Session 1, which served as a base-
line. The following session consisted of the same task,
that is, a 2-min series of neutral and positively valenced
images.

Equipment and ERP Recordings

EEG data were recorded using a Muse device from Inter-
axon Inc., Toronto, Canada. The Muse has four electrodes,
in the 10–20 coordinate system, with locations correspond-
ing to AF7, AF8, TP9, and TP10, and a reference at Fpz.
EEG data were sampled at 256 Hz and were streamed
via a Bluetooth connection (Kowaleski, 2022) to a Python
program (Griffiths et al., 2020), which stored the data.

The experimental stimuli were presented through
PyschoPy (Peirce & MacAskill, 2018), which also sent trig-
gers during the stimulus onset, which were merged into the
EEG data stream. The images were presented on a 1400 LCD
monitor with full brightness, located approximately 50 cm
in front of the participant. The experimental control soft-
ware was based on the EEG Notebooks system and the
modified code for the picture viewing task is available
online (https://github.com/nomcomm/MediaNeuroscience
OnAShoestring_JMP).

ERP Analysis

EEG Preprocessing and Artifact Rejection
EEG data were analyzed using the MNE-Python software
(Gramfort et al., 2014). The entire analytic pipeline is avail-
able online at https://github.com/nomcomm/MediaNeu-
roscienceOnAShoestring_JMP. In brief, continuous EEG
data were filtered and epochs were extracted from 100
ms before the stimulus to 800 ms after the presentation
of the stimulus. Given that only the four-channel (AF7,
AF8, TP9, TP10) and Fpz-recording reference are available,
we did not re-reference the data offline. Rejection of epochs
due to artifacts was done based on the MNE automated
artifact rejection routines and complemented by visual
inspection (Gramfort et al., 2014; Jas et al., 2017).

From the 240 trials that each participant saw over the
course of the experiment (some participants received min-
imally fewer trials due to a small change in the code, but all
received well over 200 trials), we applied strict artifact-con-
trol criteria to reject artifact-laden epochs (average across
participants: 47.6%, SD = 20.5%). After the visual inspec-
tion, the Python package Autoreject was used, an algorithm
that determines the appropriate threshold for epoch rejec-
tion (Gramfort et al., 2014; Jas et al., 2017). Moreover, we
rejected all the data from 23 participants due to low over-
all recording quality, leaving a final sample of 47
participants.

ERP Averaging and Statistical Comparison of ERPs
Toward Positive and Neutral Images
ERP waveforms were subsequently computed by averaging
together clean epochs for positive and neutral images,
respectively. These averages were based on approximately
56 epochs per condition (Mpos = 59.89, SD = 22.70; Mneu

= 58.57, SD = 22.91; t-test for dependent samples, ns).
Finally, the ERPs for positive/neutral images from individ-
ual participants were averaged to derive a grand-average
ERP for each condition.

To statistically test for differences between the ERPs
toward positive and neutral images, we assessed the mean
ERP amplitude in the time windows of interest (200–300
ms and 400–600 ms) and compared mean amplitude val-
ues for positive and neutral mean ERP amplitudes across
participants via paired-sample t-tests.

Results

ERP Results

The ERP results demonstrate that the Muse device was able
to capture the millisecond-by-millisecond electrocortical
signature evoked during passive picture viewing. As is evi-
dent from the grand-averaged ERPs shown in Figure 2,
the signal measured at sensors TP9 and TP10 reveals wave-
forms that are consistent with the ERP literature on visual
picture viewing (Luck, 2005; Schupp et al., 2006). These
results provide strong evidence that the Muse devices can
be used to conduct ERP studies.

Passive Viewing of Positive Versus Neutral
Images

To test for ERP differences between positive and neutral
images, we calculated average ERPwaveforms for each con-
dition and tested for mean amplitude differences in the time
windows between 200–300 ms and 400–600 ms, respec-
tively. Importantly, although the EPN and LPP components
are typically assessed over occipitotemporal or centropari-
etal sites, the Muse systems only have two temporal sensors
(TP9 and TP10). However, due to the characteristic volume
conduction of EEG, effects could still be expressed at these
sensor sites (see Figure 2, which shows that there are no dif-
ferences at frontal sites, but small differences in the grand-
average waveforms at temporal sites). Nevertheless, a statis-
tical test showed that these were not statistically significant,
neither for the 200–300-ms window – mean amplitude in
time window, collapsed over TP9 and TP10: Mpositive =
2.88 μV, Mneutral = 2.97 μV, t(46) = �0.24; ns; same result
when tested separately at each sensor – nor for the 400–
600-ms window – Mpositive = 0.58 μV, Mneutral = 0.94 μV,
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t(46) =�1.08; p = .29). A post hoc power/sensitivity analysis
(see Electronic Supplementary Material, ESM 1) revealed
that with an α level of .05, 1 � β = 0.8 (0.95), and a sample
size of 47, the study is powered to detect an effect size of
dz = 0.37 (0.49).

Although these results do not support our first hypothe-
sis, inspection of Figure 2 shows some evidence for an
amplitude difference in the LPP range at TP10 (i.e., approx-
imately 500–550ms). We assessed this effect in an explora-
tory follow-up analysis by submitting the average amplitude
in the 500–550-ms window to a paired-sample t-test. This
analysis revealed a significant difference between ERPs to
positive and neutral images at the right temporal sensor
(TP10) – Mpositive = 0.4 μV, Mneutral = 1.23 μV, t(46) =
�2.38; p = .02 – with positive images prompting relatively
lower amplitudes, but no significant difference at the corre-
sponding left sensor (TP9) – Mpositive = 0.49 μV, Mneutral =
0.7 μV, t(46) = �0.5; p = .61. Of note, the differential pat-
tern in this is compatible with the signature of the LPP,
which is traditionally observed as a relative positivity at cen-
troparietal sites and thus should prompt a polarity-inverted
negative difference over inferior temporal regions.

Influence of Compliance Instructions on
Data Quality

Our second hypothesis was that the compliance-gaining
manipulation would improve signal quality. We reasoned
that the additional instruction that the experimental group

received would lead to a decrease in the sample drop rate
in the EEG data, which serves as an implicit measure of
compliance-gaining success. To quantify this, we analyzed
the sample drop percentage-rates for each session sepa-
rately for the control and experimental groups. This analy-
sis revealed that the average sample drop rate for the first
session of the control group (M = 51.15, SD = 17.38) was sim-
ilar to the first session of the experimental group, M = 47.5,
SD = 22.59; t(45) = 0.61, ns. Importantly, for the second ses-
sion, the control group had a mean drop rate of 54.13 (SD =
18.86), whereas the experimental group (i.e., with added
instructions) had a mean drop rate of 35.04 (SD = 16.35),
which proved to be significantly lower, t(45) = 3.71, p <
.001. Furthermore, the experimental group showed a signif-
icantly improved drop rate from Session 1 (before the
request) to Session 2 (after the request), t(23) = 3.13, p <
.01. The control group, however, showed no change in drop
rate, t(22) = �0.75, ns. These results are illustrated in
Figure 3. The results support our second hypothesis,
demonstrating that the additional instructions to gain com-
pliance resulted in better signal quality, as seen in a signif-
icantly lower sample drop rate.

Discussion

This study tested a novel, affordable, and mobile EEG
device for media research by performing an ERP experi-
ment with affective IAPS images. The results demonstrate

Figure 2. Grand-average ERP waveforms for positive and neutral images. The schematic illustration in the middle shows the approximate location
of the sensors in the Muse device. Note that due to volume conduction, a sensor picks up more than the immediate activity from the brain region
over which it is placed. The reference is located between AF7 and AF8 at Fpz. Shaded areas around the waveforms represent 95% confidence
intervals as these are grand-average ERPs, that is, averages across individuals. ERP = event-related potential.
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that the Muse EEG device can assess robust ERPs to visual
messages. Although the difference between moderately
positive and neutral images was not found in the 200–
300-ms and 400–600-ms time windows, an exploratory
analysis revealed a significant difference at the TP10 sensor
between 500 and 550ms. Additionally, we tested the effect
of a compliance-gaining instruction to improve data quality,
finding that it improved the quality of recorded EEG.

With our first hypothesis, we predicted a difference in
ERPs when participants viewed positively valenced or neu-
tral IAPS images. Testing for this effect in the time windows
where this result is typically seen in high-density EEG stud-
ies (i.e., between 200–300 and 400–600 ms) did not sup-
port this hypothesis. While no significant differences were
detected in the a priori defined time windows, follow-up
analyses confirmed a significant difference in the reduced
time window (500–550 ms) at the right TP10 sensor. Of
note, this effect consisted of a relative negativity toward
the positive emotional images, which may at first seem
incompatible with the notion that ERPs in the 400–600-
ms range have been shown to exhibit relative positivities
to more emotional images. These differences, however,
are normally maximum at centroparietal sites, where the
Muse device does not record. The principles of EEG vol-
ume conduction, however, predict that these electrocortical
differences reverse their polarity over inferior sites, such as
TP9/TP10, and thus our observations seem compatible
with this literature (another issue being that of the refer-
ence electrode, which in our case is at Fpz).

Overall, the Muse device was able to capture robust ERPs
during image viewing. This validates the use of this mobile

and low-cost device for research, although the predictions
for H1 were not supported in its original form. One plausi-
ble explanation for this pattern of results might be that pos-
itive stimuli came from the middle range of the arousal and
valence continuum. In other words, there were no IAPS
images depicting explicit erotica, which are rated very high
in arousal, in our stimulus sample, but these were deliber-
ately excluded to maintain a focus on visual content that
would be encountered on common social media websites.
However, this choice made our manipulation of affect con-
siderably less powerful compared to previous studies,
where high-arousal content evokes the strongest effects
(e.g., Schupp et al., 2004). In sum, although more research
with stronger manipulations of emotional image content is
needed, our results suggest that the Muse device is a
promising tool to make ERP analysis of visual messages
more available for media researchers.

The second hypothesis predicted that a compliance-gain-
ing manipulation would result in a lower sample drop per-
centage compared with participants not receiving this social
influence tactic. This hypothesis was supported and the
result is promising, as a simple change in instructions could
yield better data from a variety of psychophysiological stud-
ies. Having a set of optimized instructions is practically rel-
evant. As previously expensive neuroscientific equipment
becomes more commodified, this will also lead more
inexperienced users, citizen scientists, and early-career
researchers to enter this area. Consequently, having stan-
dardized best practices (on device use, participant instruc-
tions, and analysis pipelines) will aid new researchers to
obtain better data and enhance overall reproducibility.

In addition to pointing out a strategy to optimize instruc-
tions in pyschophysiological experiments, the approach is
also theoretically interesting. EEG quality metrics, such as
the sample drop rate (i.e., the fraction of trials that are
dropped due to missing quality standards), can be consid-
ered an implicit measure (Nosek et al., 2011), allowing us
to test how manipulations impact these implicit neural out-
comes. Obviously, we selected only one of many possible
compliance-gaining strategies here, and future work should
expand beyond the specific choice we made in this work
(Marwell & Schmitt, 1967).

Broader Implications and Future Research

Overall, this study lays out a viable path to overcome cen-
tral barriers that plagued the emerging field of media neu-
roscience: high cost of equipment, limited scalability, and
the time-consuming nature of data acquisition. We showed
how a study using neurophysiological measures can be con-
ducted on a budget that is comparable to cognitive testing
or survey methods. The setup time for this system was less
than a couple of minutes and testing one participant took

Figure 3. Effect of added instructions on data quality. The experi-
mental group, which received an additional request to comply with
EEG instructions, shows a lower sample drop rate in Session 2
compared to the control group that did not receive this request. The
drop rates of both groups are not significantly different at baseline
(Session 1). The error bars represent the 95% confidence interval.
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approximately 15 min, including consent. This not only
makes the study far more attractive for participants, but it
enables media researchers to use neuroimaging methods
while avoiding the time sink associated with preparation
of high-density EEGs. These developments open the door
to swiftly conduct large-scale studies to test the effects of
messages in natural environments that people would
receive, for instance, a classroom filled with students wear-
ing mobile EEGs and listening to a lecture (Poulsen et al.,
2017). Additionally, the Muse is similar to a headband
and is very light and comfortable, which improves the par-
ticipants’ user experience and adds to the naturalistic feel
of the experiment.

Another important issue is the free availability and open-
source nature of procedures. Historically, the cost and pro-
prietary nature of tools presented another significant barrier
for adoption. The notebooks from which we developed the
current study are available online (Griffiths et al., 2020;
https://neurotechx.github.io/eeg-notebooks) and we our-
selves provide open-source routines for acquisition and
analysis (https://github.com/nomcomm/MediaNeuro-
scienceOnAShoestring_JMP). Thus, the only barrier that
remains if a media researcher wants to adopt these
methods is that of acquiring substantive expertise in neuro-
physiology, including data acquisition, analysis, and inter-
pretation. Given recent developments in the field – via
tutorials, workshops, and interest groups – this barrier is
continuing to shrink (Floyd & Weber, 2020; Turner et al.,
2019; Wilcox et al., 2020). In all, the barriers to start utiliz-
ing neuroimaging methods has been greatly reduced
through mobile EEG units, such as the Muse.

Based on our encouraging results, future studies may
tackle a broader variety of social–cognitive processes using
scalable neuroimaging methods. Although, of course, the
spatial and temporal resolution of these devices remains
below that of fMRI or high-density-EEG, the high scalability
and low-cost nature represent a decisive factor that can
boost the adoption of neuroimaging methods. One area
for which this approach is obviously promising is the study
of social-media-sharing decisions (Meshi et al., 2015; Scholz
et al., 2019) and the mass appeal and virality of emotional
and social content more broadly (Hu et al., 2014; Tong
et al., 2020).

The current study focused on the role of visual images
for social–emotional processes, but going forward, the ben-
efits of the Muse EEG device and other low-cost EEG sys-
tems apply to nonvisual modalities and beyond social-
media topics. For instance, similar arguments as we laid
out for the impact of emotional and social visual content
can be made for spoken and written messages. Indeed, sev-
eral precursor studies exist in this domain examining the
neural reception of buzzwords (Kissler et al., 2007) or
clashing moral statements (Van Berkum et al., 2009). This

work could likewise be scaled up easily using the strategy
proposed here.

Another avenue for research is the study of dynamic
media, be it on the order of seconds (YouTube, TikTok)
or hours (movies, TV, and radio). In the current study, we
focused on ERP methods because they use repeated pre-
sentations to increase the signal-to-noise ratio, but future
work could employ other EEG analysis methods such as
intersubject correlation analysis or entrainment-based
methods (Crosse et al., 2016; Lalor et al., 2006; Poulsen
et al., 2017; Schmälzle & Grall, 2020a). Additionally, the
Muse has shown promise as a medical tool to aid in diag-
nosing the severity of strokes based on activity in different
EEG frequency bands (Wilkinson et al., 2020). Lastly,
newer models of the Muse (Muse 2, Muse S) have been fit-
ted with a photoplethysmography sensor, accelerometer,
and gyroscope, which all have uses in research and medical
settings. As such, we see several promising avenues for
future EEG research with the Muse or other mobile devices,
including ERP, oscillations, and various other paradigms
and analysis approaches.

Limitations

Although the current results are encouraging, several limi-
tations are noteworthy. As discussed earlier, one limitation
is that the positive images were not very arousing, which
may have precluded more potent effects. Future studies
should test the Muse with the same stimuli used in previous
studies (Lang et al., 1993; Schupp et al., 2004). Addition-
ally, the study relied on the normative IAPS ratings, and
participants were instructed to view all images in a passive
stream but were not asked to evaluate the images neither
during nor after participating. Although there is no reason
to expect that individual ratings would deviate from the
carefully collected norms, instructions to evaluate visual
content constitutes a different task, which affects process-
ing and thus modulates ERPs.

Another issue to keep in mind is that the low cost of the
Muse system does come at a price in terms of data quality
and quantity. First, we excluded many participants whose
EEG data did not meet quality criteria. Second, across the
remaining participants and conditions, the average sample
drop rate was almost 50%. This could be due to the four
dry sensors on the device and the fact that the device is
only loosely mounted – much like glasses. Many EEG units
make use of conductive gels or liquid solutions, and EEG
sensors are often integrated into elastic nets to ensure a
constant force. Although dry EEG sensors considerably
speed up data acquisition and are much more comfortable
for participants, the signal quality is lower than with con-
ventional gel-based or saline-based EEGs. Lastly, that sig-
nal is sent to the recording computer through a Bluetooth
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connection, which can drop data in the process. These are
all noteworthy limitations; they do not override the fact that
the system’s quality is acceptable for research. We also ver-
ified this by comparing the ERP results from subsamples
(i.e., between the two sessions and between the two partic-
ipant groups), demonstrating very high correlations
between ERPs (> .9). This demonstrates that the Muse
device measures ERPs with precision.

Compounding the quality of data of Muse was the fact
that participants self-fitted the EEG headset themselves
and that they did not clean or abrase their skin. Additionally,
they had never seen or used the device before, and so they
fitted it following a brief description. Furthermore, recent
work from Wilkinson et al. (2020) shows that connectivity
can be improved when sensors are coated in silver chloride
and the skin areas have electrolyte gel applied. While it is
good to note that data quality can be improved by these pro-
cedures, knowing that it is possible for participants to put the
device on themselves greatly expands the scalability of EEG
studies with the Muse or its use in field studies.

Lastly, we note limitations of the compliance-gaining
manipulation.We tested only one condition against a control
condition, and this test always came after a baseline instruc-
tion. To turn this into a proper instantiation of, for example,
a foot-in-the-door manipulation, additional conditions
would be needed. Nevertheless, it seems clear that these
manipulations could be implemented in future studies,
much like A/B testing is regularly performed to optimally
steer online user behavior (Kohavi & Longbotham, 2017).

Conclusion

To conclude, incorporating neuroscience in media research
has been held back by complicated and expensive method-
ologies, but advancements in EEG technology have opened
the door for researchers to embrace these methods with
lower cost and higher scalability potential. The Muse EEG
system is a relatively easy-to-use and extremely affordable
EEG unit that can provide the temporal resolution needed
to study the reception of visual messages. The successful
capture of ERPs with the Muse validates the use of the
device in future studies.

Electronic Supplementary Material

The electronic supplementary material is available with
the online version of the article at https://doi.org/
10.1027/1864-1105/a000348
ESM 1. Description of Muse setup and implementation
and experimental procedure
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