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Abstract 

Health messages are core building blocks of public health efforts. Neuroscientific 

measures offer insights into how target audiences receive health messages. To move towards 

real-word applications, however, challenges regarding costs, lab restraints, and slow data 

acquisition need to be addressed. Using portable EEG and inter-subject correlation (ISC) analysis 

as measure of message strength, we ask whether these challenges can be met. Portable EEG was 

recorded while participants viewed strong and weak video health messages against risky alcohol 

use. Participants viewed the messages either individually or in a focus group-like setting with six 

participants simultaneously. For both viewing conditions, three correlated components were 

extracted. The topographies of these components showed high spatial correlation with previous 

high-density EEG results. Moreover, ISC was strongly enhanced when viewing strong as 

compared to weak health messages in both the group and individual viewing condition. The 

findings suggest that ISC analysis shows sensitivity to message strength, even in a group setting 

using low-density portable EEG. Measuring brain responses to messages in group settings is 

more efficient and scalable beyond the laboratory. Overall, these results support a translational 

perspective for the use of neuroscientific measures in health message development. 

Keywords 

health communication, portable EEG, group, inter-subject correlation, ISC, alcohol 

Introduction 

Every day, we come across health messages on topics like smoking, nutrition, or risky 

alcohol use. Such mass media messages are crucial for public health efforts as mass media 

provides the ability to reach large populations through TV, radio, or online media (e.g., Rice & 

Atkin, 2013; Wakefield et al., 2010). However, there remains the challenge to design and select 

messages that effectively achieve campaign goals, such as impacting attitudes or health-related 

behavior. Health messages often use engaging audio-visual formats or stories to make them 

memorable and heighten individual risk perception. Typically, message development and 

selection is done by using self-report methods such as focus groups or surveys (Merton & 
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Kendall, 1946; Rice & Atkin, 2013). More recently, brain measures have also been used to 

examine affective and cognitive reactions to health messages (e.g., Falk, 2010; Imhof et al., 2017; 

Kaye et al., 2016; Schmälzle et al., 2020; Weber et al., 2014). Neuroscientific measures can 

complement self-report methods for assessing health message reception by providing process-

based insights captured during the actual moment of reception. These measures do not rely on 

retrospective recall and can detect responses that may occur outside of conscious awareness 

(e.g., Falk et al., 2015; Weber et al., 2018). Furthermore, there is increasing evidence that neural 

measures contribute to the understanding of health behavior change, explaining variance 

beyond that accounted for by self-report measures (Berkman & Falk, 2013; Falk et al., 2015; 

Imhof et al., 2020). 

The brain reactions to dynamic health messages can be assessed by a technique called 

inter-subject correlation analysis (ISC). ISC assesses how stimuli prompt similar brain responses 

across audience members, yielding a measure to quantify the impact of media messages (Hasson 

et al., 2010; Schmälzle, 2022). While other neural metrics assess brain activity at the individual 

level, ISC identifies the brain-to-brain commonalities among multiple subjects. Theoretically,  ISC 

measures are ideal to assess health communication, because they provide an inherently 

audience-based metric of collective  brain engagement, which aligns with the goal of mass 

communication efforts (Schmälzle, 2022). Methodologically, ISC measures have  the advantage 

that they allow using fully naturalistic messages while circumventing the need for complex 

stimulus models or artificial control of stimulus features. 

Previous research covering rhetoric, interpersonal communication, narratives, or movie 

viewing suggests that ISC levels during naturalistic stimulation relate to message strength, and 

affective and cognitive processing more generally (Hasson et al., 2012; Hasson et al., 2010; 

Jääskeläinen et al., 2021; Schmälzle, 2022; Schmälzle et al., 2015). The ISC method has also been 

employed in lab research on health communication. For instance, when participants viewed a 

video concerning the H1N1 swine flu in the fMRI scanner, individuals with high risk perception 

showed increased ISC in the anterior cingulate cortex compared to individuals with low risk 
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perception, presumably reflecting increased responses to threatening information (Schmälzle et 

al., 2013). Most notably, enhanced ISC was observed to strong video health messages against 

risky alcohol use in the dorsomedial prefrontal cortex, precuneus, and the insulae, presumed to 

reflect increased affective stimulus processing, self-relevance, and attention towards salient 

stimuli (Imhof et al., 2017). Taken together, growing evidence suggests that ISC-based brain 

measurements provide insights in the dynamics of message reception and thus can help us 

understand how health messages impact audiences. 

Despite these promising results, health communication neuroscience is still primarily a 

research tool and whether it has application potential remains an open question. Indeed, the 

translation of brain activity measurements from a pure research method into a useful tool for 

health message development and pre-testing faces many challenges. In medicine, this shift is 

often referred to as the "bench to bedside" problem, encompassing the journey from developing 

a drug, device, or procedure in the laboratory to its implementation in clinical or real-world 

settings (Drolet & Lorenzi, 2011; Wolf, 1974). Similarly, public health researchers distinguish 

between approaches that "can work" and those that "do work in practice” (Cochrane, 1972; 

Haynes, 1999). Considering this translational continuum, health communication neuroscience is 

still in the “bench” or “can work” mode. 

Applied to the context at hand – using neural measures in message pre-testing - several 

challenges emerge: First, basic research relies on often expensive, complex techniques and lab 

environments. Translating this to practical applications necessitates cost-effective solutions that 

are feasible in non-lab or everyday situations. Second, basic research is typically time-consuming 

because data collection mostly happens one-participant-at-a-time. One way to overcome the 

data collection bottleneck is to collect data from multiple individuals together, combining social 

scientific focus group methods with neural measurements (e.g., Berns & Moore, 2012; Falk et al., 

2010). If these challenges can be overcome, then neuroimaging might progress to a stage where 

it could support the development or selection of strong messages. 
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One technique that meets the requirements to overcome these challenges is EEG. 

Modern EEG amplifiers have become portable and more affordable. Indeed, research in 

educational and entertainment contexts demonstrates that it is possible to measure EEG in 

classroom, outdoors or in cinema settings (e.g., Barnett & Cerf, 2017; Dikker et al., 2017; Reinero 

et al., 2020; Zink et al., 2016). Moreover, the ISC approach to assess dynamic audio-visual stimuli 

has meanwhile also been extended to lab EEG (e.g., S. S. Cohen & Parra, 2016; Dmochowski et al., 

2012; Madsen & Parra, 2022). A first study showed that EEG-ISC captured with low-density 

portable EEG during viewing engaging movies individually in a classroom setting was consistent 

with findings brought out with higher-density systems (Poulsen et al., 2017). Recently, we 

showed that strong health messages against risky alcohol use induced heightened EEG-ISC in a 

lab environment. In this work, we also used independent fMRI data to link the ISC findings not 

only to sensory-perceptual areas but also to the insula, the dorsomedial prefrontal cortex and 

further cortical midline regions - brain regions that have previously been associated with 

successful messaging (cf. Imhof et al., 2020). 

The present study is an effort to move health communication neuroscience from a basic 

feasibility, or “can it work?”-stage, to a more practical implementation, or “does it work in 

practice?”-stage. To this end, we used a series of strong and weak video health messages against 

risky alcohol use. These messages previously elicited distinct differences in both, self-reported 

perceived message effectiveness, and synchronized brain reactions, as captured by fMRI- and 

EEG-ISC (Imhof et al., 2017, 2020). Here, we used portable EEG while presenting the messages to 

participants in two distinct ways: either individually, which resembled the conventional method, 

or in a group setting with six participants simultaneously viewing the messages. While more 

affordable, portable EEG comes with reduced spatial coverage and less sensors. Thus, one aim of 

the study was to test the reliability of ISC findings under these circumstances by using portable, 

24-channel systems in a non-shielded everyday-like room to replicate previous findings from a 

stationary, 256-channel EEG within an electrically shielded lab environment (Imhof et al., 2020). 

In a first step, we determined whether portable systems can capture distinct correlated 
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components in the EEG signal (Dmochowski et al., 2012; Parra et al., 2019) and whether the 

spatial topographies of these components match those from prior lab research. Next, we tested 

whether this setup could reveal increased brain synchronization among message recipients for 

strong as opposed to weaker messages, which was previously found during individual viewing 

with high-density lab EEG (Imhof et al., 2020). Finally, we assumed that similar results would 

emerge when conducting recordings within a more scalable group setting. Achieving alignment 

in results between EEG systems as well as the individual and group viewing condition are 

important prerequisites for translational applications and would support the use of neural 

measures in groups to explore the effectiveness of health messages.  
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Methods 

Participants 

The final sample included 41 participants (MAge = 22.90, SD = 2.99, range: 18 to 32 years; 

24 females, 17 males). 21 participants were measured in the group viewing condition while 

another 20 participants were measured in the individual viewing condition. Participants were 

eligible for the study if they reported drinking at least four alcoholic beverages per week. We 

assessed the participants’ drinking behavior using the AUDIT alcohol screening questionnaire 

(range: 0 – 40; Babor et al., 2001). All participants in both viewing conditions exhibited risky 

drinking patterns (MAudit = 11.10; SD = 4.76; range: 5 - 22) based on a cut-off recommendation 

for the German population (Rumpf et al., 2002). There were no significant differences across the 

two viewing conditions groups with respect to alcohol consumption (measured by means of 

AUDIT scores), age or gender ratio (AUDIT: t(39) = 1.05, p = .30; MGroup = 11.86, SD = 4.23; 

MIndividual = 10.30, SD = 5.25; Age: t(39) = .87, p = .68, MGroup = 23.10 years, SD = 2.28; 

MIndividual = 22.70 years, SD = 3.64, two-sided independent samples t-tests; 12 females per group). 

Furthermore, there were no significant differences in risk perception across the two participant 

groups (see Supplementary Methods). 

All participants had normal hearing, normal or corrected-to-normal vision, and no 

history of neurological or psychological diseases. Data of four additional participants were 

excluded, due to intense signal artifacts at several sensors (N = 1), technical failure (N = 1), or 

not meeting predefined criteria for alcohol consumption or medication (N = 2). Excluded data 

were not analyzed. Sample size was based on the large effects observed in our previous work 

(Imhof et al., 2020) and based on the Covid-19 restrictions at the time of data collection, that is, 

it was possible to perform a total of four group measurements with six participants at a time.  

Power calculation (Faul et al., 2007) suggests that the empirical power of our study to find a 

moderate to large main effect of Video Category, was .88 to .99 (alpha = .95, f = .25 to .40) and to 

find a moderate two-way interaction effect of Video Category and Viewing Condition was .88 

(alpha = .95, f = .25). All participants received course credit or monetary reimbursement. 
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Written informed consent was obtained according to the Declaration of Helsinki and the 

procedures were approved by the ethics committee of the University of Konstanz. 

Materials 

To create a strong and a weak health message category we used 10 of the most and 10 of 

the least effective messages of a larger database containing German-speaking video health 

messages against risky alcohol use. The same messages have been used in previous research and 

a more detailed description can be found in Imhof et al. (2017). Duration of the messages varied 

between 20 and 110 s and did not differ between the two categories (t(18) = .43, n.s.; 

MStrong = 58.5 s, SD = 25.93; MWeak = 49.5 s, SD = 25.00; independent samples t-test, two-sided). 

Basic physical features were assessed in our previous work, e.g., luminance, movement, or 

acoustic features, revealing no differences across the two message categories (Imhof et al., 

2020). To control for effects of video length on EEG-ISC, we assessed potential relations between 

message length and ISC. As in our previous work (Imhof et al., 2020), there was no relation 

between length [in s] and EEG-ISC of any of the correlated components and neither for group 

nor individual viewing (Pearson’s rs = -.10 to .27, all ps > .25).  

Procedure 

Prior to the experiments, we assessed EEG eligibility and collected self-report measures 

of drinking behavior as well as alcohol-related risk perceptions (t1). In the main session, strong 

and weak health messages were presented in pseudo-randomized orders. In the group setting, 

six participants watched the video health messages, while sitting together in a semicircle in front 

of the screen (see Figure 1). Due to a no-show, one recording in the group viewing setting took 

place with five participants. In the individual viewing setting, one participant each viewed the 

messages in the same room. Seating positions were varied in the individual setting to resemble 

the seating positions in the group setting. In both viewing conditions, participants were asked to 

limit their movement during video viewing and instructed to freely and attentively view the 

videos, as in our previous and comparable ISC work using audio-visual stimuli. Additionally, in 

the group viewing condition, participants were instructed to refrain from talking during the 
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videos. At least one researcher always remained in the back of the room to control stimulus 

presentation and EEG recordings. Due to Covid-19-related restrictions during the data collection 

period, participants in both viewing conditions wore face masks, limiting communication among 

participants. 

We used Presentation software (Neurobehavioral Systems, Inc.) to present the videos 

and to synchronize EEG acquisition. Videos were wall-projected in front of the participants with 

a resolution of 800 * 450 pixels (projection size: 57 x 32 cm). The distance to the wall was 

approximately 270 cm yielding horizontal and vertical visual angles of about 12° x 7°. Sound was 

delivered via stereo speakers located in front of the participants. A three-second animated video 

fixation was presented prior to each health message. Participants were asked to attentively view 

the video health messages, without any further task instruction. After each video, a blank screen 

(ITI = 3.5 s) was presented. Overall, EEG measurements lasted for approximately 25 minutes. 

Participants watched all messages again in randomized order in a separate block directly 

after the main session (t2). For each video, participants provided single-item ratings regarding 

perceived effectiveness, argument strength and the amount of threatening or shocking content. 

Moreover, to track changes in alcohol-related risk perceptions and behavior, we collected self-

report data prior to (t1), directly after the main session (t2), and in a four-week follow up online 

questionnaire (t3). As in previous work, self-report items targeted at detailed alcohol 

consumption and risk perceptions were used. Contrasting to Imhof et al. (2020) there were no 

significant changes in risk perception and behavior (for details, see Supplementary Methods). 

----------------------------- 

Figure 1 here 

----------------------------- 

EEG acquisition and preprocessing 

EEG and EOG scalp potential fields were measured with a 24-channel sensor cap 

(Smarting mobi EasyCap, mbt: mbraintrain.com; see Figure 1c). EEG data were sampled at 

250 Hz using portable Smarting mobi amplifiers and recorded with Smarting Streamer 
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acquisition software v3.4.3. Electrode impedances were kept below 10 kΩ, as recommended by 

manufacturer guidelines. Data was recorded continuously with the default reference FCz (Sensor 

CMS) and on-line filtered at the Nyquist frequency. 

Data segments corresponding to the video health messages were extracted using the 

open-source signal processing toolbox EEGLAB and in-house MATLAB code. Offline 

preprocessing of EEG and EOG data was conducted based on prior work (e.g., S. S. Cohen & 

Parra, 2016; Dmochowski et al., 2012; Imhof et al., 2020; Parra et al., 2019). Specifically, EEG and 

EOG data were high-pass (0.5 Hz, IIR Butterworth filter, 6th order) and notch filtered (50 Hz, IIR 

Butterworth stopband filter, 49.5 & 50.5 Hz cutoffs). Eye movements were corrected by linearly 

regressing the approximate EOG channels (Fp1, Fp2, F7 & F8) from all other EEG channels. 

Outlier samples were identified in each channel, if their magnitude exceeded three times the 

interquartile range of the signal. Samples 40 ms before and after these outliers were replaced 

with zero values. Electrode channels with high variance (signal magnitude exceeding three times 

the interquartile range) were identified and replaced with zero values. These artifact rejection 

procedures were performed to discount outlier samples and channels in the subsequent 

calculation of covariance matrices, as ISC computation is sensitive to outliers (see also S. S. 

Cohen & Parra, 2016; Dmochowski et al., 2012; Parra et al., 2019). 

EEG-ISC analysis 

EEG-ISC analysis was conducted based on the open-source code by Parra and colleagues, 

which can be obtained at parralab.org/isc/ (for a detailed description, please see Parra et al., 

2019). In short, covariance matrices at the viewer and channel levels were calculated within and 

between viewers from the preprocessed video data segments. ISC is defined as the ratio of the 

between-subjects covariance (i.e., the sum of covariance matrices of all pairs of viewers) and the 

within-subject covariance (i.e., the sum of covariance matrices of all viewers), normalized by a 

common scaling factor (see Parra et al., 2019). This ratio was estimated via generalized 

eigenvector decomposition with the constraint that the components be mutually uncorrelated. 

Unlike blind source separation procedures, such as PCA, which extract linearly independent 
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components, ISC aims to fit a spatial filter by maximizing the contrast between specific data 

features, i.e., the between- and within-viewer covariances (cf. M. X. Cohen, 2022). In other words, 

the EEG-ISC can reveal shared neural signals in different viewers. The extracted eigenvectors, 

called maximally correlated components, represent linear combinations of sensors that reveal 

maximal correlation across viewers over time. Hence, these linear combinations of electrodes 

are common to all viewers. The EEG data for each viewer is then projected into this component 

space. For each correlated component, EEG-ISC is extracted, by averaging the Pearson 

correlation coefficient of the projected time-courses between all pairs of viewers in the 

respective group (e.g., S. S. Cohen & Parra, 2016). To obtain unbiased estimates, correlated 

components are calculated, for each participant group, using within- and between-subject 

covariance matrices averaged across all videos.  In contrast to a voxel-by-voxel approach - as 

often used in fMRI - this approach allows detection of large-scale activity patterns, which 

otherwise could be occluded when using a sensor-by-sensor approach (e.g., Dmochowski et al., 

2012). Based on inspection of the eigenvalue distribution (Supplementary Figure SM1) and the 

topographies of previous work (e.g., S. S. Cohen & Parra, 2016; Dmochowski et al., 2012; Imhof et 

al., 2020), we extracted three components. As in previous work, we calculated their forward 

models to visualize the spatial distribution of the correlated components (Figure 2a). The 

forward models represent the covariance between a component’s signal and the signal at each 

sensor (Dmochowski et al., 2012; Haufe et al., 2014; Parra et al., 2005).  

To analyze experimental effects, EEG-ISC was then extracted for each video and each 

participant, separately. We subsequently averaged the ISC values across strong and weak videos 

for each component and submitted them into three mixed repeated-measures analyses of 

variance (ANOVAs) with the within-subjects factor Video Category (strong vs. weak) and the 

between-subjects factor Viewing Condition (individual vs. group). Effect sizes were estimated by 

partial (η2
p) and generalized (η²G) Eta squared. As the assumption of heteroscedasticity was not 

met for EEG-ISC of component C3 (Fs(1,39) > 7.04, ps < .02; Levene’s test), we conducted a 

robust repeated-measures ANOVA based on trimmed means. As statistical inferences drawn 
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from both analyses did not differ, we report results of the parametric ANOVA for ease of 

comparison (Table 1). The non-parametric results are reported in the Supplementary 

(Table SR2). Subsequent post hoc t-tests were Holm-corrected to account for multiple 

comparisons. Effect sizes were calculated using Cohen’s d. 

In a second stream of robustness analyses, we assessed the spatial and temporal stability 

of the correlated components across viewing conditions and studies, that is, across EEG systems. 

For across-study comparisons we use data from an independent participant sample who viewed 

the same health messages while wearing high-density EEG (N = 32, 256-channel EEG, 1000 Hz 

sampling rate, band-pass filtered from .01 to 400 Hz; for details, see Imhof et al., 2020). 

For assessing spatial stability, we extracted the weight matrices for each sample and each 

correlated component at the sensor sites corresponding to the portable EEG (Figure SR1 & 

Table SR1). The resulting matrices were Fisher z-transformed and Pearson correlation 

coefficients were calculated to assess spatial correlation across viewing conditions and studies. 

To assess temporal stability, we first calculated the time-resolved ISC for each video and 

each correlated component, using a 2 s sliding window with .25 s increments (Figure 3a). These 

ISC time courses were then used to assess the across-viewing and across-study stability. For 

each component and each video, we compared the Fisher z-transformed ISC time courses by 

means of Pearson correlation, resulting in three correlation values per video and per 

comparison (Figure 3b). These correlation coefficients were subsequently averaged across 

videos to report the across-study and across-group temporal stability for each component 

(Figure 3c). 

Statistical analyses were conducted using MATLAB R2021b version 9.11.0.1809720 (The 

MathWorks Inc.), jasp version 0.17.1 (JASP Team, 2023) and R version 4.2.3 (R Core Team, 

2022) with the R packages and “WRS2” (Mair & Wilcox, 2020) and “rstatix” (Kassambara, 2023)  
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Results 

Perceived effectiveness of the videos 

Perceived message effectiveness (PME) ratings were significantly correlated with those 

of the previous fMRI and EEG audiences (rs ≥ .96, ps ≤.001, independent data from Imhof et al., 

2017, 2020). As in our previous work, the single-item PME measure was highly correlated with 

single-item scales measuring perceived argument strength and threatening content (rs ≥ .90, 

ps ≤ .001), supporting its use in examining message effectiveness in the current study. 

Next, we assessed differences in PME ratings across viewing conditions using a mixed 

repeated measures ANOVA with the between subject factor Viewing Condition (individual vs. 

group viewing) and the within subject factor Video Category (strong vs. weak). The main effect of 

Video Category confirmed that strong messages were evaluated more effective (MStrong = 5.85, 

SE = .37, MWeak = 2.50, SE = .14; F(1,18) = 71.65, p < .001,   
  = .79,   

  = .80). Furthermore, the 

main effect of Viewing Condition indicated that participants in the individual viewing condition 

evaluated the messages generally more effective compared to the group condition (MIndividual = 

4.43, SE = .46, MGroup = 3.94, SE = .40; F(1,18) = 21.80, p < .001,   
  = .07,   

  = .55). The interaction 

of Viewing Condition with Video Category approached significance (F(1,18) = 3.87, p = .065, 

  
  = .01,   

  = .18). Post hoc tests confirmed that strong messages were perceived more effective 

in both viewing conditions (ts(18) ≥ 7.68, Δ ≥ 3.15, ps < .001, Holm correction, Cohen’s 

ds ≥ 3.43). In sum, PME ratings in the current audiences revealed high replicability and 

confirmed the distinction into strong and weak videos. 

Spatially replicable correlated components using portable EEG 

To be useful in translational settings, measures need to be consistent and reliable across 

settings. Thus, we determined whether low-density EEG could reveal the correlated components 

observed in previous research using high-density EEG. Figure 2a illustrates the topography of 

the three correlated components in the present study separately for the two viewing conditions. 

As can be seen, nearly the same topographies were observed across individual and group 

viewing conditions. The spatial correlations of the correlated components’ topographies 
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identified using portable EEG were very high across viewing conditions (rs > .96, ps < .001, , 

Bonferroni corrected). Comparing the topographies of the 24-channel portable EEG and data 

collected in previous research using high-density lab EEG (Imhof et al., 2020) revealed a 

remarkably consistent pattern for these correlated components (Fig. 2b). The correlated 

components’ topographies also revealed a high spatial correlation with the topographies from 

high-density EEG with spatial correlations ranging from rs > .71 for C2, to rs > .83 for C3 and 

rs > .98 for C1 (all ps < .0054, Bonferroni corrected, for details see Supplementary Table SR1 & 

Figure SR1). To assess the relation between spatial stability of the correlated components and 

sample size, we conducted an exploratory analysis, in which we randomly drew an increasing 

number of EEG data from the full sample (N = 41). As visualized in Figure SR2 (Supplementary 

Results), correlated component C1 was identifiable - in our stimulus material and viewing setting 

- with data of at least three participants onwards. For components C2 and C3, component 

topographies appeared stable at about six participants onwards. In sum, the topographies 

brought out with low-density EEG show a close correspondence across viewing conditions and 

EEG systems. 

----------------------------- 

Figure 2 here 

----------------------------- 

Temporal stability of EEG-ISC across viewing conditions and EEG systems 

To assess the temporal stability of the EEG-ISC, we calculated ISC resolved over time 

using a sliding window approach. Then, as shown in Figure 3a & 3b, Pearson correlations were 

computed to compare the time-resolved ISC for each correlated component across both, the 

individual and group viewing conditions in the current study, as well as the independent group 

from previous work using high-density lab EEG (Imhof et al., 2020). 

----------------------------- 

Figure 3 here 

----------------------------- 
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As shown in Figure 3c, average across-sample correlations of the ISC time courses for 

each correlated component revealed remarkable replicability with average inter-correlations of 

up to rAvg-C1 = .87 for C1 (SD = .07, 95%-CI: .85 to .89) and medium to large average inter-sample 

correlations for correlated components C2 and C3 (rAvg-C2 = .46, SD = .24, 95%-CI = .40 to .52; 

rAvg-C3 = .33, SD = .19, 95%-CI = .28 to .38). Inter-sample correlations within the portable EEG 

data sets were even higher for C2 and C3 with r GroupXIndividual C2 = .54 and r GroupXIndividual C3 = .40. 

Overall, ISC over time as captured by the correlated components was reliable across viewing 

conditions and EEG systems. 

Audience brain coupling across video categories and viewing conditions 

Two test audiences were exposed to health messages while measuring portable EEG in 

two viewing conditions. As shown in Figure 4, the findings supported the two main hypothesis 

regarding differences in audience brain coupling as a function of health message effectiveness: 

First, replicating previous findings using high-density EEG, ISC was consistently enhanced 

during strong messages in the lab-like individual viewing condition. Second, the effect was 

extended to a context resembling a focus group. Lastly, this finding of enhanced audience brain 

coupling was highly consistent across viewers. Across both viewing conditions, the pattern was 

expressed in every audience member for C1 and C2, and in 40 (out of 41) for C3. With respect to 

effects of viewing condition, there were less pronounced differences in ISC across viewing 

conditions for C1 and C3 with higher ISC in the individual compared to the group viewing 

condition. 

----------------------------- 

Figure 4 here 

----------------------------- 

To statistically confirm that strong messages prompted enhanced audience brain 

coupling, we submitted the level of ISC to mixed repeated measures ANOVAs including the 

within factor Video Category (strong vs. weak) and the between factor Viewing Condition 

(individual vs. group viewing) to show potential effects of the viewing setting. 
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Main effect Video Category: Enhanced audience brain coupling during strong messages 

For all three correlated components, significant main effects of Video Category confirmed 

the expected enhancement of ISC during strong as compared to weak videos (Fs(1,39) ≥ 162.18, 

ps < .001,   
  ≥ .44). For C1 & C3, the interaction of Video Category and Viewing Condition was not 

significant (Fs(1,39) < 1.60, ps > .21, n.s.; for details, see Table 1). For C2, the main effect of Video 

Category was qualified by the significant interaction with Viewing Condition (F(1,39) = 12.11, 

p = .001,   
  = .04). Post hoc-tests for C2 confirmed that EEG-ISC was larger for strong videos in 

both viewing conditions (ts(39) ≥ 11.22, ps < .001, Holm correction, Cohen’s ds ≥ 1.87).  

Main effect Viewing Condition: Differences in brain coupling across groups  

For correlated components C1 and C3, significant, albeit less pronounced main effects for 

Viewing Condition showed that ISC in the individual viewing condition was larger compared to 

the group viewing condition (Fs(1,39) ≥ 5.39, ps ≤ .026,   
  ≥ .10). For C2, the main effect of 

Viewing Condition was not significant (F(1,39) = 1.30, p = .26, n.s.). Post hoc tests following up 

the significant two-way interaction for C2 showed that, during strong videos, ISC was larger in 

the group setting compared to individual viewing (t(39) = 2.35, p < .05, Holm correction, 

Cohen’s d = .74, Figure SR3 in the Supplementary Results). This effect was not seen for weak 

videos (t(39) = .24, p = .81, n.s.). 

----------------------------- 

Table 1 here 

-----------------------------  
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Discussion 

Measuring brain responses offers insights into how messages affect recipients and can 

thus contribute to the development of more effective health campaigns (Falk, 2010). It is critical, 

however, that findings obtained in optimized conditions, such as the shielded chambers of EEG 

labs or dedicated fMRI scanners, can be replicated in real-world settings (cf. Nastase et al., 2020; 

Shamay-Tsoory & Mendelsohn, 2019). The present study addressed two challenges for neural 

measures in the context of health communication. First, we show that ISC is feasible and remains 

sensitive with low-density portable EEG. Two main findings support this assumption: The 

current study replicated reliably the correlated components obtained using high-density 256-

channel EEG in a lab setting. Furthermore, ISC captured by the components was sensitive to the 

experimental manipulation, replicating the finding of enhanced EEG-ISC for strong health 

messages (Imhof et al., 2020). Second, we show that assessing neural data during health 

message reception is feasible in groups, which is more efficient and opens new avenues for 

audience research. This is supported by the equal results obtained when six participants were 

measured simultaneously compared to the traditional, one-person-at-a-time individual viewing 

setting. Overall, these results support a translational perspective on the use of neuroscience 

measures in health message development. 

EEG research has been on the forefront for collecting neural data in non-laboratory 

settings. For instance, portable, low-density EEG has been successfully used to replicate 

laboratory EEG findings during attention and engagement (e.g., Bleichner & Debener, 2017; 

Debener et al., 2015; Holtze et al., 2022; Krigolson et al., 2021; Poulsen et al., 2017). Here, we 

assessed whether EEG-ISC can be measured reliably with portable devices and in non-laboratory 

settings. Conceptually, EEG-ISC relies on a spatial filtering approach in which linear 

combinations of scalp sensors are sought that maximize the correlation across the audience (cf. 

Parra et al., 2019). Thus, to obtain correlated components reliably, scalp sensor density needs to 

be sufficient. The 24-channel montage used here has inherently less head coverage and a lower 

spatial resolution of ~6 cm inter-sensor distances, especially compared to the previously used 

256-channel montage with ~2 cm distances (Imhof et al., 2020). Nevertheless, spatial 
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correlations ranged from r = .71 to .97 when comparing the correlated components’ 

topographies for portable EEG and high-density EEG. Interestingly, the order of the correlated 

components – based on their amount of captured ISC – differed in part compared to our previous 

work (see Figure 2; Imhof et al., 2020). However, even with reduced spatial coverage and 

resolution, the main correlated components were retrieved in the signal and resembled those 

previously seen in work with audio-visual stimuli in general (S. S. Cohen & Parra, 2016; 

Dmochowski et al., 2012; Poulsen et al., 2017) and video health messages in particular (Imhof et 

al., 2020). 

In addition to replicating the topographies, testing the sensitivity of the correlated 

components’ ISC to message strength is critical; after all, the premise of using neuroscience for 

message testing is that it is sensitive to variations in relevant message characteristics. Thus, the 

second key finding is that even with low-density portable EEG, brain coupling was robustly 

enhanced during the reception of strong messages. In previous work, we linked ISC of these 

components to fMRI-BOLD signal changes (Imhof et al., 2020). Relations were seen not only 

within primary sensory regions, but also within the posterior cingulate cortex (C2), the insula 

and precuneus (C2 and C3) as well as the anterior cingulate and dorsomedial prefrontal cortex 

(C3) - brain regions commonly linked to personal relevance, affect and attentional processes 

more broadly (Etkin et al., 2011; Murray et al., 2012; Qin & Northoff, 2011; Raichle, 2015; 

Schmitz & Johnson, 2007; Shackman et al., 2011). Within the context of naturalistic health 

message processing, replicating enhanced brain coupling to strong messages demonstrates that 

ISC with portable EEG is robust and sensitive to message strength, underscoring its potential as 

a neural marker of effective messaging. Future research should extend these promising findings 

to other public health topics. 

Developing robust and efficient message evaluation protocols has been an important 

topic in health communication. For instance, a recent protocol relying on survey measures 

suggested that an audience of around 25 individuals is sufficient to select the most promising 

health messages from a larger pool (Kim & Cappella, 2019). From a translational perspective, it 

is thus encouraging that neural measures are obtainable with similar sample sizes. However, the 
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need to collect data in a serial, one-person-at-a-time manner considerably prolongs the duration 

of data collection and limits its potential. To connect to social scientific methods, one could 

envision “neural focus groups” in which brain measures collected in the audience may aid in 

selecting health messages (Falk, 2010). Previous research has shown that group EEG is feasible 

in settings ranging from the classroom (e.g., Dikker et al., 2017; Poulsen et al., 2017), to game 

playing and cooperation (e.g., Astolfi et al., 2010; Reinero et al., 2020), to musicians performing 

together (e.g., Babiloni et al., 2012; Müller & Lindenberger, 2023). However, a prerequisite for 

using group recordings in message testing is that neuroscientific measures in groups can 

reproduce individually obtained component topographies and sensitivity to message strength. 

In this study, the topographies in the group setting closely replicated the individual condition 

and showed high spatial and temporal stability. Even more importantly, the correlated 

components showed increased brain coupling for strong messages, with large effect sizes in both 

viewing settings. While not optimized for this type of analysis, exploratory analyses showed that 

ISC was positively related to self-reported PME, as indicated by robust rank correlation 

coefficients for EEG-ISC of components C1 to C3 (Spearman’s 𝜌s = .63 to .76 all ps < .0038, see 

Supplementary Results Table SR 3) in both viewing conditions. However, health messages in this 

study were pre-selected from the upper and lower end of the PME distribution from Imhof et al. 

(2017). Thus, while we anticipate that neural measures may aid in brain-based message 

selection, future work with messages that cover the full range of message strength is needed to 

assess the relation of ISC and message strength. Rapid progress in technology might further pave 

the way for application by making EEG systems unobtrusive and easier to apply, such as around-

the-ear devices (Bleichner & Debener, 2017; Holtze et al., 2022). Overall, the current results 

suggest that neuroscientific measures might progress along the translational continuum to a 

stage where message evaluation protocols are feasible. 

Health messages are seen individually or in the company of others, and this co-viewing 

may alter viewing experience. For example, social influences can shape message effects on 

individuals, and several mediators and moderators, such as group identity, or audience reactions 

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/advance-article/doi/10.1093/scan/nsae087/7912639 by guest on 02 D

ecem
ber 2024



 

 
 

 

 

 
  

20 
 

have been identified (Tal-Or, 2021). In the current work, differential ISC effects between strong 

and weak messages were similarly consistent and comparable in effect size for both, co-viewing 

in a group and individual viewing (see Table 1). In addition, albeit with lower effect sizes 

compared to message strength, EEG-ISC was also modulated by viewing conditions. ISC captured 

by the correlated component C1 was larger in the individual than in the group viewing setting. 

Based on our previous observation that EEG-ISC of this component may primarily reflect 

sensory processing (Imhof et al., 2020), lower ISC in the group setting might be related to 

distraction or divided attention. Interestingly, EEG-ISC of components C2 and C3, which have 

been conceptually related to personal relevance, affect, and attention regulation (cf. Imhof et al., 

2020), were differentially modulated by viewing condition. Specifically, ISC of component C2 was 

larger during group than individual viewing. It is a common finding in media psychology that co-

viewing can enhance audience response, e.g., during public viewing of soccer matches or friends 

watching shows together (Tal-Or, 2021). Similarly, a group setting may have effects on the 

reception of health messages due to shared attention and collective emotions, which in turn, 

might influence attitude change (Tal-Or, 2016). However, ISC of component C3 was larger in the 

individual than group viewing condition demonstrating more nuanced relationships between 

message processing and viewing condition. One may speculate that viewing the health messages 

individually or in a group context may invoke shifts between intrinsically and extrinsically 

oriented neural  processing (cf. Golland et al., 2007; Yeshurun et al., 2021), leading to differential 

EEG-ISC effects seen in the distinct correlated component. This hypothesis could be examined in 

future research using functional imaging to consider the relation between neural effects of 

health message reception and task effects, specifically guiding intrinsic and extrinsic processing 

modes. Furthermore, as a caveat, one needs to consider that increases in ISC may also be 

artificially induced, for instance by shared noise (e.g., Burgess, 2013). Overall, portable EEG 

appears suitable to both, individual and group measurements, and thus especially useful for 

exploring co-viewing effects on health message processing due to its accessibility. For example, 

real-world conditions of health message reception can be mimicked by comparing individual 

viewing to co-viewing with friends and peers (cf. Baek & Parkinson, 2022). 
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A limitation of the present study is that previous findings on the association between 

health message processing and change in drinking behavior were not replicated. Specifically, we 

previously observed that ISC of components C2 and C3 was a predictor of reductions in risky 

drinking, explaining variance going beyond self-report measures (Imhof et al., 2020). Such 

findings motivate the use of self-report and brain measures in concert, and thus, are of particular 

importance. A critical difference between the present and previous research regards the 

variability of drinking behavior, which was considerably reduced in the current sample. This 

change in drinking behavior may be related to the unique circumstances invoked by the 

Covid-19 pandemic which - among many other changes - affected college student drinking 

behavior. For instance, Covid-19-related increases in drinking frequency went along with 

decreases in drinking amounts, heavy drinking, as well as reduced opportunities for social 

drinking (Jackson et al., 2021). It thus seems possible that these changes contributed to the 

reduced variability of drinking behavior in this study, which may have hindered the replication 

of previously seen effects. Overall, it seems important to confirm our initial observations in 

future studies using larger sample sizes. 

Neuroscientific measures provide a valuable tool for message testing in health 

communication, adding significant value beyond self-report measures (Falk et al., 2010; Weber 

et al., 2018). A particularly valuable line in communication neuroscience is the brain-as-

predictor approach in which neural activity recorded during health message processing is linked 

to behavior change (Berkman & Falk, 2013; Falk et al., 2010; Falk et al., 2015). Developing 

effective health campaigns requires messages that achieve their aims within the target audience. 

The present findings suggest that focus groups in which health messages are screened in small 

target groups, can be extended to a neural focus group approach. Previous research showed that 

EEG-ISC predicted behavioral measures more reliably in large audiences, that is, the population, 

than in the sample where EEG was recorded (Dmochowski et al., 2014). Thus, the neural signal 

may not only provide insights into the processes underlying message reception but also 

represent a reliable predictor of message effectiveness in target audiences. Prospectively, neural 

measures obtained from relatively small samples could complement the common practice of 
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extensive audience research using large samples, a concept known as neuroforecasting (see 

Genevsky & Yoon, 2022 for a review). 

Conclusion 

Translating neuroscientific research to real-world applications faces challenges 

concerning costs, time, and feasibility of data collection. The present study served as a 

proof-of-principle that some of the challenges can be met. We demonstrated that the EEG-ISC 

approach is feasible when using data from groups exposed to health messages. Importantly, 

portable low-density devices replicated findings of increased brain coupling to strong health 

messages in groups of six participants. These findings support the view that combining the ISC 

approach with cost-effective - and thus scalable - group EEG offers potential beyond the 

laboratory. Enriching message development with insights from neuroscientific measures may 

help to make messages more effective. Considering that health messages reach millions, even 

small improvements may lead to consequential differences. 
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Figure Legends 

Figure 1 | Experimental setting and recording setup. a) Participants viewed the video health 

messages while sitting in a semicircle. Groups of six participants sat next to each other while 

watching the video health messages. In the “Individual Viewing” setting, one participant watched 

the videos in the same room setup. Recording laptops received the wirelessly transmitted EEG 

signal. The video health messages were projected onto the wall. Sound was delivered via 

speakers located in the front beneath the projection. b) Analysis scheme: Correlated components 

and ISC were extracted separately for each viewing condition and compared in a 2 x 2 mixed 

repeated measures design. c) Portable EEG amplifier, 24-channel gel-based sensor net and 

sensor positions (image used by permission of mbt: mbraintrain. The content in this lower left 

panel is not covered by the terms of the Creative Commons license of this publication. For 

permission to reuse, please contact mbt: mbraintrain). 

Figure 2 | Maximally Correlated EEG Components captured using low-density portable EEG 

during the viewing of alcohol prevention videos. a) Topographical maps visualize the scalp 

projections, i.e., the forward models of the correlated components C1 to C3 obtained using 

portable EEG. Scalp projection magnitude represents the strength to which each sensor 

contributes to a component (blue to yellow - arbitrary units, polarity of projections normalized). 

b) Topographical maps obtained in previous work with high-density lab EEG reveal inter-study 

stability (Data from Imhof et al. (2020); for illustrative purposes components are re-ordered to 

resemble the order of the current work). 

Figure 3 | Stability of EEG-ISC Inter-Sample Correlations. a) Exemplary ISC over Time is shown 

for Video 5. A 2 s-sliding window is used to calculate ISC over Time separately for each 

Correlated Component and each sample (Individual Viewing: N = 21, Group Viewing: N = 20 & 

Individual Lab EEG: N = 32). b) Correlation matrices show for each video the Pearson correlation 

coefficients across ISC time courses of all combinations of samples. c) Left: Box plots illustrate 

distribution and average inter-sample correlations, center lines represent sample median, 

hinges represent 25th and 75th percentiles. Right: Average inter-sample correlations across 

samples and components. 

Figure 4 | Maximally Correlated EEG Components reveal differences in ISC for low-density 

portable EEG data during the viewing of alcohol prevention videos – irrespective of Viewing 

Condition. Box plots show average EEG-ISC for each correlated component, separated by the 

message categories Strong (red) and Weak (blue). Post hoc tests are visualized for the factor 

Video Category. Connecting lines visualize paired measures for all participants. Participants 
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exhibiting a reversed pattern of results (ISCWeak > ISCStrong) are colored red. Colored dots within 

box represent the mean, center line represents the sample median, hinges represent the 

25th and 75th percentiles, outliers are marked by a red cross. Asterisks indicate significance of 

two-sided, paired samples t-tests, *** = p < .001, Holm correction. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Image Preview: 

 

Table 1 | F-statistics for Within and Between Subjects effects from mixed repeated measures ANOVA assessing 
differences across video categories and experimental tasks. 

  Effect F p-value 
Sum of 
Squares 

η²G η²p 

C1       

  

 

 Video Category 278.36 < .0001 .0147 .44 .88 

 Viewing Condition 11.23 .0018 .0048 .20 .22 

 Video Category ✻ Viewing Condition .19 .6657 < .0001 . . 

      

C2       

  
  

 Video Category 381.58 < .0001  .0042 .58 .91 

 Viewing Condition 1.30 .2616 < .0001  . . 

 Video Category ✻ Viewing Condition 12.11 .0012 .0001 .04 .24 

      

C3       

  

  

 Video Category 162.18 < .0001  .0014 .44 .81 

 Viewing Condition 5.39 .0256 .0002 .10 .12 

 Video Category ✻ Viewing Condition 1.60 .2140 < .0001  . . 

      

Notes. N = 41. Within factor: “Video Category” (strong/weak). Between factor: “Viewing Condition” (Individual Viewing/Group 
Viewing). Type 3 Sums of Squares. η²G = generalized η²; η²p = partial η². For ease of overview, effect sizes for effects with p > .10 are 
excluded. 
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