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Abstract: When audiences watch a movie, we can examine the similarities 
among their brain activity via inter-subject correlation (ISC) analysis. This 
study examines how the strength of ISC (how similarly brains respond) 
varies over the course of a Pixar short fi lm: specifi cally comparing this 
across the exposition, rising action, climax/fall out, and resolution sections 
of the story. We focus on ISC in the mentalizing network, often linked to 
social-cognitive processes that are essential to narrative engagement. We 
fi nd that ISC rises from exposition to the climax. Moreover, we explore this 
shared response across age groups, fi nding that ISC is present across age 
groups, albeit weak in younger children. This approach off ers new insights 
into the brain basis of engagement and story structure.

Keywords: audience engagement, inter-subject correlation, narrative 
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Mass media in general, and narratives in particular, can powerfully aff ect 
audiences and evoke similar responses among large audiences (e.g., Zill-
mann 2010). This includes everything from shared reactions to a scary 
slasher movie to the ability of an inspiring news story to become the talk 
of the day. However, how to capture these shared audience responses has 
been a pervasive question (e.g., Bryant and Oliver 2008). Historically, much 
research has employed self-report measures, but these cannot observe 
biological responses that occur on a moment-to-moment basis, or those 
outside of the scope of introspection. The emerging fi eld of media neuro-
science emphasizes that the brain is the essential intermediary between 
message content and media eff ects, and neuroimaging measures provide 
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Analyzing fMRI data from adults 
and children watching a Pixar movie 
demonstrates shared audience 
engagement (indicated by ISC) as 
the plot unfolds.

In particular, we fi nd:
•  Audience brain responses become 

more similar from the exposition 
to the story’s climax

•  This shared engagement remains 
strong through the story resolution

•  Notably, this is true for the 
mentalizing network associated 
with social cognition thought to 
be vital for story processing and 
comprehension

•  Adults and children show broadly 
similar patterns of activity

•  However, the three-to-fi ve-year-
olds have less similarity with each 
other and with other groups

a way to interrogate brain responses while a 
movie unfolds (e.g., Hasson, Landesmann et 
al. 2008).

Over the past decade, numerous studies 
have shown how biological measurements 
can support theoretical developments in me-
dia research (e.g., Weber et al. 2008). Within 
this context, an approach called inter-subject 
correlation (ISC) quantifi es the degree to which 
the brains of audience members who are ex-
posed to the same media exhibit similar or 
shared neural responses during reception 
(Hasson, Nir et al. 2004; Hasson, Landesmann 
2008; Nastase et al. 2019; Schmälzle and 
Grall 2020). Previous research has examined 
ISC over the course of a whole fi lm, demon-
strating that narratives command higher ISC 
(i.e., higher similarity between viewers’ brain 
responses) than CCTV footage (Hasson, Lan-
desmann 2008), and that inspiring and sus-
penseful narratives result in higher ISC than 
expositional texts (Grall et al. 2021; Schmälzle 
and Grall 2020). Yet much of the work using 
this approach looks at brain-to-brain similar-
ities over the course of an entire narrative 
rather than examining how particular scenes 
evoke brain responses, or examines ISC over 
the whole brain rather than calculating how 

this similarity might manifest in specifi c subregions of the brain that are of 
theoretical interest.

In this study, we examined audiences’ shared neural activity over the 
course of a Pixar short fi lm, specifi cally in a network of brain regions impli-
cated in social-cognitive processes that are key to following and engaging 
with narrative content. We (1) replicate studies showing that brain activity is 
similar across members of a movie audience; (2) examine how this shared 
activity varies across the act structure of an unfolding plot; and (3) compare 
patterns of movie-evoked brain similarities between audiences comprising 
of children and adults.

Brain Responses to Stories
Following a story clearly depends on obligatory sensory and perceptual 
mechanisms (e.g., seeing images or reading/hearing words), but also re-
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quires higher-level brain systems related to understanding the actions of 
the story’s characters as well as their reactions to the story events (Boyd 
2009). We will skip discussion of the basic visual and auditory systems 
here and instead focus on the higher-order social and cognitive processes, 
which are both more germane to why people seek out and enjoy stories 
and transcend any particular story format. We will therefore sideline many 
issues of text and fi lm comprehension that center on the specifi cs of the 
mode of story transmission and its processing (e.g., in the visual and audi-
tory cortices). Instead, we focus our attention on story content, agnostic to 
its media form.2 Here, we take narratives to be sequentially linked events 
that portray characters with agency and their actions and interactions in 
some structured and organized plot (Gerrig 1993).

Because stories by defi nition center on social actors (characters) in so-
cial settings (interacting with the world around them), stories are thought 
to run in the mind like social simulators, playing upon our socially wired 
proclivities (Grady 2020; Mar 2004, 2011, 2018). Stories are processed via 
a series of interconnected mental models about the plot, characters, and 
story world (Busselle and Bilandzic 2008; Magliano and Clinton 2016; Zwaan 
1999). To successfully comprehend a narrative and become engaged by it, 
audience members must track the actions, motives, and emotional states 
of the characters, implicating several social-cognitive processes, such as 
perspective-taking, empathy, or the generation of expectations about fu-
ture actions and events (Alcalá-López et al. 2018; Frith and Frith 2012; 
Kintsch 1998; Schmälzle and Grall 2020; Sommerville and Decety 2017; Ye-
shurun, Swanson et al. 2017).

Extant literature demonstrates that processing stories recruits brain 
regions like the temporoparietal junction (TPJ), the medial prefrontal cor-
tex (mPFC), and the precuneus (Mar 2011). The TPJ, mPFC, and precuneus, 
together with temporal lobe and subcortex regions, are heavily involved in 
social-cognitive processes, broadly defi ned, and they are often collectively 
referred to as the mentalizing network, especially within social neurosci-
ence literature (Lieberman 2015).

We use the label mentalizing network here, but we note that these re-
gions overlap with the default mode network (DMN) (Raichle 2015). The 
DMN is associated with several higher-level processes, including self-related 
cognition, autobiographical memory, or mind-wandering, and recent the-
oretical work argues that this network integrates extrinsic and intrinsic 
information over longer timescales to form context-dependent models of 
unfolding situations (Yeshurun, Nguyen et al. 2021). This role of the DMN 
in “sense-making” processes is very compatible with empirical fi ndings that 
show that its subregions, particularly the TPJ, activate during tasks designed 
to manipulate mentalizing (Schurz et al. 2014) as well as when people pro-
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Figure 1. Inter-
subject correlation 
(ISC) analysis iden-
tifi es shared brain 
responses evoked by 
a visual movie

cess socially engaging narratives (e.g., Jääskalainen et al. 2021; Nguyen et al. 
2019; Tikka et al. 2018). As such, this article examines the network of brain 
regions implicated in a variety of social-cognitive processes over the course 
of a short narrative fi lm.

Measuring Shared Brain Responses 
via Inter-Subject Correlation Analysis
Prior research demonstrates that as people process the same narrative, 
their brains should exhibit similar brain responses, and this similarity can 
be measured via the inter-subject correlation technique (Hasson, Nir et 
al. 2004; Nastase et al. 2019). In essence, this method calculates correla-
tion coeffi  cients between brain activity time series from diff erent audience 
members. Starting with the basic analysis of the sensory input of media 
stimuli, it seems clear that brain regions involved in vision should respond 
somewhat similarly to a movie because the same images are presented to 
all viewers. Critically, however, since the movie’s social content is also the 
same for everyone, we would also expect that regions like the TPJ or other 
parts of the mentalizing network discussed above should exhibit similar 
responses (e.g., Lerner et al. 2011; Chen et al. 2017, for review see Jääska-
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lainen et al. 2021; Schmälzle, Wilcox et al. 2022). This reasoning predicts 
that shared brain responses should emerge while audience members pro-
cess a narrative:3

H1: When watching a (visual) narrative, audiences will exhibit similar 
brain responses in regions that span from regions involved in basic 
vision to higher-level regions of the mentalizing network.

Brain activity is captured while audience members view a movie (here Pix-
ar’s Partly Cloudy, 2009), extracted from individual regions, and compared 
across viewers. Regional ISC results are color-coded and plotted on a 
brain map. Thus, the images in this article show how similar brain activity 
is across audience members, with brighter colors representing more con-
sistent responses.4

Shared Brain Activity during an Unfolding Narrative
In addition to exposing shared brain responses to an entire narrative, the 
similar brain responses central to ISC analysis may be used to map dynamic 
changes in audience engagement over the course of a story’s twists and 
turns (Schmälzle and Grall 2020). Specifi cally, by computing ISC analyses 
separately for individual parts of a movie, one can potentially use the ap-
proach to tap into the “strength of the grip” a given part of the stimuli has on 
the audience (e.g., Hasson, Landesmann 2008). This would open the door to 
address many exciting research questions related to narrative structure and 
composition, which have long captured the interest of narrative scholars. In-
deed, canonical Western conceptualizations of narrative structure point to a 
common “beginning, middle, end” format. These views date back to Aristotle 
(trans. 2013) and echo famous fi gures like Gustav Freytag (1863), Joseph 
Campbell (1949), and Kurt Vonnegut (1995). While the details of these story 
models vary, there is broad agreement that stories consist of a series of 
linked events, involving confl ict that unfolds over time and leads toward a 
fi nal climax and resolution (Gerrig 1993). Freytag’s Pyramid is perhaps the 
most developed of these models and thus served as a starting point for our 
examination of the relationship between story structure and the collective 
audience responses identifi ed via ISC analysis. With this in mind, we are in-
terested to see how the shared brain activity varies over the unfolding plot 
(its exposition, rising action, climax, and denouement), particularly within the 
brain regions of the mentalizing network discussed above.

Several narrative theories, such as aff ective disposition theory (Zillmann 
2000), excitation transfer (Zillmann 2006), emotional fl ow (Nabi and Green 
2015), and peak-end theory (Redelmeier and Kahneman 1996), imply that 
a story’s structure can modulate audience responses at diff erent points in 
a narrative. One general observation from entertainment research is that 
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as a story unfolds, audience members may become progressively drawn 
into the story and generally more engaged (Green et al. 2004; Greenwald 
and Leavitt 1984; Schmälzle and Grall 2020). We therefore might expect 
that narrative structure relates to the degree audiences’ brain responses 
converge. If true, then the strength of ISC indices, which measure the 
shared brain engagement of viewers, should increase over the course of 
the movie, culminating in the tense moments of a story’s climax and imme-
diate resolution. In particular, such variations in ISC strength on the basis of 
structural characteristics of narratives should be particularly evident within 
the abovementioned mentalizing network, and some prior work has indeed 
reported compatible attentional modulations of ISC strength (e.g., Grall et 
al. 2021; Schmälzle, Häcker, Honey et al. 2015; Yeshurun, Swanson et al. 
2017). Thus, we hypothesize the following:

Figure 2. Connecting story structure to by-segment inter-subject correlation

Left panel. Throughout history scholars have noted that stories’ structural characteristics vary over 
time. Although details vary, a consistent implicit idea is that stories have a temporal-structural 
organization that should aff ect the audience’s response.

Right panel. Functional neuroimaging provides a way to capture brain responses during movie 
viewing. The key idea is to resolve ISC for individual segments as opposed to computing it for an 
entire movie. Thus, by structurally dividing the story into segments and computing ISC within each 
segment, we can quantify the strength of shared audience brain responses during the premise/
exposition, the rising action, climax/fall out, or resolution parts, respectively.
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H2: Shared brain activity (ISC) will vary throughout the narrative, in 
which the premise prompts the lowest levels of shared brain activity 
within the mentalizing network, followed by an increase in shared 
brain activity during the exposition, and the climax commanding the 
highest level of shared brain activity among viewers.

However, if rising tension causes brain activity across the audience to 
converge, it is unclear what will happen when that narrative tension is re-
solved. When everyone is interested in the climax, it seems reasonable that 
everyone would be interested in its fallout, and shared activity would re-
main high through the denouement. Conversely, we might surmise that 
once the central tension is resolved, audiences’ brains will “decouple” as 
individuals trend back to their own idiosyncratic thought patterns, reducing 
coeffi  cients of shared activity as the story winds down. We thus ask:

Exploratory RQ1: Will shared brain activity during the resolution 
stage of the plot diff er from the other parts of the narrative?

Comparing Shared Brain Activity between Adults and Children
As children develop, marked changes occur within their cognitive systems 
involved in selective attention, language comprehension, social cognition, 
and numerous other capacities essential to narrative reception (e.g., Decety 
and Cowell 2016; Johnson and DeHaan 2015). For instance, media research 
demonstrates that older children are much more likely to recount the mo-
tivations of character actions than younger children (e.g., Surber 1982; 
Wartella and Alexander 1978) and successfully infer characters’ emotional 
states (see Hoff ner and Cantor 1991). This naturally raises the question 
of how brain responses that underpin these media reception processes 
may vary as children develop. Notably, several recent studies have already 
examined shared audience brain responses to examine children’s develop-
mental trajectory of social cognition or processing diff erences associated 
with clinical diagnoses (Cantlon and Li 2013; Glerean et al. 2016; Hasson, 
Avidan et al. 2009; Richardson et al. 2018). Yet, this work tends to focus on 
general cognitive and clinical aspects of maturation rather than the nexus 
between development and narrative processing.

Therefore, we will also explore the role of age on our predictions above, 
particularly for younger children (known to have less developed social-
cognitive skills) and older children (who reliably perform as well as adults 
on many social-cognitive tasks such as theory of mind tests, see Richard-
son et al. 2018). From a media processing perspective, young children may 
therefore respond diff erently to socially driven story content than more 
mature audiences. However, it is unclear whether younger children would 
have high shared neural activity, comparable to more mature audiences, 
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or whether shared neural activity might be generally lower because young 
children may exhibit attention fl uctuations, more idiosyncratic processes, 
and so forth (see Fisher 2019; Piazza et al. 2021).

Exploratory RQ2: Will shared neural activity within the mentalizing 
network diff er between adults and children in diff erent parts of the 
narrative?

The Present Study
The current study examines how a movie engages the brains of viewers 
in a similar way, as evidenced by correlated brain responses across recip-
ients (using inter-subject correlations, or ISC). We leveraged an open neu-
roimaging dataset in which a large audience’s brain activity (n = 155) was 
recorded while people viewed a short, animated fi lm depicting a social nar-
rative about two friends (Richardson et al. 2018). Moreover, the sample 
covered an age range from very young children up to adult viewers. To test 
the hypotheses and research questions introduced above, we fi rst exam-
ined adult participants’ ISC throughout the whole movie, and then subse-
quently quantifi ed the strength of ISC (i.e., the degree of between-viewer 
brain similarity) during separate parts of the narrative. We assessed ISC 
for each of 268 individual brain regions and zoomed in specifi cally on the 
mentalizing network defi ned above because of its putative involvement in 
story processing and social cognition more broadly. Finally, we compared 
ISC between audiences comprising adults and children, the latter being fur-
ther divided by developmental age bracket.

 Methods
In this study, we analyze a public dataset (OpenNeuro #ds000228) that 
contains fMRI recordings from a sample of adults and children watching 
a Pixar short fi lm (Richardson et al. 2018). Below, we provide only a short 
description of the original dataset’s most relevant methodological features 
and a more in-depth description of our own procedures.

Sample
The sample (n = 155) included 33 adults ranging from ages 18 to 39 (20 
female; Mage = 24; SDage = 5), and 122 children (64 females). In our analysis, 
we binned children into three age brackets, ranging from 3 to 5 (nyoung children = 
31), 5 to 8 (nmiddle aged children = 57), and 8 to 13 years (nolder children = 34), with a hard 
upper bound such that a child who was 5 years and 3 months old would 
be binned in the middle bracket. These bins were specifi ed in line with de-
velopmental literature suggesting mentalizing processes mature in toddler-
hood and are fully functioning by age fi ve, and that children over age eight 
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process media content and narrative characters more like adults than their 
younger counterparts (Hoff ner and Cantor 1991; Richardson et al. 2018).

Movie Stimulus
All participants viewed a silent version of the animated Pixar short fi lm, 
Partly Cloudy (2009, 5.6 minutes). The fi lm explores the bond of friendship 
and loyalty between a storm cloud and his loyal but long-suff ering delivery 
partner, a stork named Peck.

Movie Segment Coding
Five coders annotated the fi lm into fi ve acts, using a descriptive codebook 
drawing from Freytag’s (1863) pyramid and other sources to note the time 
of each act break. While intercoder agreement was high (Krippendorff ’s α 
= .984, using ReCal-OIR; Freelon 2013), an exact timestamp was required 
for each act break to uniformly segment the brain data. Final timestamps 
were selected by an a priori analysis plan based on majority rule and aver-
aging equivalent responses (within +/- 5 seconds across coders). Although 
the codebook was based on a traditional fi ve-act structure, two concerns 
became apparent during this process. First, diff erentiating the climax of a 
story and its immediate outcome was diffi  cult to parse in such a short fi lm 
and led to some intercoder disagreements. We, therefore, collapsed two 
of the coded acts, climax and fallout, into one story segment resulting in 
four story segments (see fi gure 3).5 This had the added benefi t of increased 
statistical power, as there is only one full-brain scan every two seconds, and 
fewer, longer story segments would be more robust for our temporally- 
based analysis plan. While we acknowledge this segmentation of narrative 
structure is relatively rudimentary compared to the nuanced rhetorical 
structures debated by narratological scholars, it is to our knowledge one 
of the fi rst attempts to unite neural measures of audience response and 
traditional tenets of narrative theory.

fMRI Acquisition, Processing, and Inter-subject Correlation Analysis (ISC)
We document the analysis pipeline in the form of reproducible Jupyter-
notebooks in the study’s online repository: https://github.com/nomcomm/
ISC_StoryStructure_Projections. Additional methodological details on fMRI 
acquisition procedures can be found in the original study (Richardson et 
al. 2018).6 In brief, fMRI data were recorded continuously while participants 
viewed the movie with a TR of 2 seconds, yielding 168 volumes that corre-
spond to a movie duration of 336 seconds (5 minutes, 36 seconds). Prepro-
cessed data were downloaded and our own analyses of these data were 
then carried out using functions from the nilearn and BrainIAK packages 
(Abraham et al. 2014; Kumar et al. 2020) and in-house code.
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The fMRI data recorded during viewing were high-pass fi ltered at 0.01 
Hz, detrended, and standardized regional brain activity time series were 
extracted. Specifi cally, we extracted data at three levels of granularity, start-
ing with a whole-brain parcellation encompassing 268 regions, then from 
the mentalizing network (masks specifi ed below), and fi nally from the rTPJ 
subregion of this network. These data extraction steps are described next.

First, we extracted and examined brain activity time series from the en-
tire brain using the 268-parcel atlas provided by Xilin Shen and colleagues 
(2013). This resulted in a 168 (time points) * 268 (regions) matrix for each 
of the 155 participants. Next, as our hypotheses focused specifi cally on the 
mentalizing network associated with a range of social-cognitive processes, 
we identifi ed this system via a term-based NeuroSynth meta-analysis. Spe-
cifi cally, we downloaded a meta-analytic map for all studies associated with 
the term mentalizing in the NeuroSynth.org database (see fi gure 3; Schmäl-
zle, O’Donnell et al. 2017; Yarkoni et al. 2011) and extracted brain time se-
ries from all voxels that fell within this mask, resulting in a single vector of 
168 timepoints. As expected, the meta-analytic mentalizing map was very 
similar to the well-known default mode network (e.g., Yeshurun, Nguyen 
et al. 2021). Finally, we focused particularly on the right temporo-parietal 
junction (rTPJ), a region that has long been associated with social-cognitive 
processes (Mars et al. 2012; Schurz et al. 2014). Thus, we also extracted the 
brain activity from the rTPJ in isolation (168 timepoints from the rTPJ).

These extracted brain activity time series were then submitted to inter-
subject correlation (ISC) analysis (Hasson, Nir et al. 2004; Hasson, Malach et 
al. 2010) to map out how similarly brain responses unfolded across viewers 
in (1) the whole brain, (2) the mentalizing network, and (3) the rTPJ specifi -
cally. The conceptual procedure of ISC analysis is illustrated in fi gure 1, and 
a methodological overview is provided by Samuel Nastase and colleagues 
(2019). In brief, ISC analysis computes the Pearson correlations between 
brain activity time series across corresponding regions from separate 
brains.

Specifi cally, the input to ISC analysis are the extracted brain time series 
from all viewers (or subgroups), and the resulting ISC coeffi  cients index how 
similarly a given brain region responds to the movie across the audience 
(or sub-audience). To carry out ISC analysis, we used the ISC-functions im-
plemented in the BrainIAK package, which have been described in a recent 
methodological review (Nastase et al. 2019), and we provide the code for 
these analyses online. Another methodological detail worth mentioning is 
the distinction between the so-called leave-one-out (LOO) and pairwise ISC 
analysis. In general, we used the LOO approach as the primary method, ex-
cept for comparisons of ISC across subgroups (e.g., adults versus children) 
that will be indicated.7
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Figure 3. Plot coding, 
brain regions investi-
gated, and fMRI signal 
inspection

Top panel. Coding the 
plot into acts yields 
on- and off set times 
for each act, which 
are used to split the 
continuous fMRI time 
series into segments 
corresponding to view-
ing each act.

Middle panel. fMRI data 
were extracted at three 
levels of granularity. 
First, we extracted data 
from 268 individual 
regions that span the 
entire cortex, yielding 
268 regional time se-
ries. Next, as the focus 
of our investigation 
was on the so-called 
mentalizing network, 
which overlaps with 
the default mode, we 
used a mask to extract 
data from regions that 
fall within this network 
mask.

Finally, we also zoomed 
in on the temporopa-
rietal junction (TPJ) as 
well as other regions 
within this network.

Bottom panel. Inspect-
ing the raw fMRI time 
series (here from the 
network-mask) reveals 
that the continuous 
brain signals exhibit 
similarities across 
viewers, which become 
especially visible once 
data are averaged.
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Static and By-Segment ISC Analysis and Analysis within Age Groups
In the past, ISC analysis has typically been carried out using the fMRI time 
courses corresponding to a movie in its entirety (Hasson, Landesman et 
al. 2008; Schmälzle, Häcker, Renner et al. 2013; Wilson et al. 2008). The 
resulting ISC map, called static ISC, refers to the degree of brain response 
similarity throughout the entire movie. To address H1, we computed this 
static ISC analysis for each subgroup of the audience (i.e., separately for 
adults and each age bracket of children).

In addition to the static ISC analysis (addressing H1), we also examined 
ISC for each of our coded movie segments (addressing H2 and RQ1). More-
over, we additionally examined this by-segment ISC across the diff erent 
age subgroups (RQ2). Thus, we computed ISC in the mentalizing system 
among the adult subgroup for the entire fi lm, and then separately for the 
segments corresponding to the premise, rising action, climax/fall out, and 
resolution. Specifi cally, we began with the sample of adults (nadults = 33) and 
submitted the fMRI time courses for each plot segment to ISC analysis (see 
above and fi gure 3).8   We then examined the brain responses of children 
for the same movie segments, examining older children (8–12 years), mid-
dle children (5–8 years), and very young children (3–4 years) separately. For 
further details see the supplementary methods and reproducibility pack-
age in the study’s online repository.9

Results

Shared Audience Brain Responses during Media Reception (H1)
First, to demonstrate that the brains of viewers exposed to the same movie 
respond in an inter-subjectively similar way, we computed inter-subject cor-
relation analyses for the entire movie (168 TRs in a static ISC analysis). The 
results are shown in fi gure 4, revealing that movie viewing evokes shared 
responses among audience members (ISC) throughout the brain. As ex-
pected, the inter-subject similarity of brain activity time courses is strongest 
in visual regions (e.g., r = 0.55 in the visual cortex for the leave-one-out 
(LOO)-ISC-analysis; p < 0.001, FDR-corrected10), and much lower for primary 
auditory regions (e.g., r = 0.147), which is well in line with the visual nature 
of a silent movie.11

The spatial distribution of ISC eff ects across brain regions corresponds 
well with that of previous reports (Hasson, Nir et al. 2004; Lahnakoski et al. 
2014; Schmälzle, Häcker, Renner et al. 2013). Importantly, we fi nd that ro-
bust ISC (indexing similar brain activity across audience members) extends 
into higher-order regions involved in salience processing, executive control, 
and—most importantly—into the mentalizing network pertinent to our hy-
potheses: ISC across the network outlined in blue in fi gure 4 as a whole 
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Figure 4. ISC results 
during the entire 
movie

These maps display 
the static ISC for 
the entire movie 
among the audience 
comprised of adults. 
As can be seen, the 
movie prompted 
strong and reliable 
ISC throughout the 
brain, strongest in 
visual regions, but 
still strong and sta-
tistically signifi cant in 
the regions outlined 
in blue, which rep-
resent the so-called 
mentalizing network 
as defi ned by Neuro-
Synth meta-analysis 
(this network over-
laps with the well-
known default 
mode network, see 
Yeshurun, Nguyen et 
al. 2021)

is clearly positive and signifi cant (ISC = 0.295, p < 0.001, FDR-corrected). 
Similarly, computing this analysis for selected regions of the default mode/
mentalizing network (as defi ned by the Shen parcellation and confi rmed by 
their overlap with the NeuroSynth-based map for mentalizing—see reposi-
tory for details): ISCright TPJ = 0.3, ISCleft TPJ = 0.353, ISCmedial prefrontal cortex = 0.245, and
ISCprecuneus = 0.374 (all p’s < 0.001, FDR-corrected). In sum, these results show 
that the short Pixar movie-evoked brain responses that are similar and thus 
collectively shared among viewers, and this similarity was specifi cally ob-
served in regions of the mentalizing network. It is important to note, how-
ever, that these similarities refer to the entire 5.6-minute fi lm, that is, they 
represent static ISC results. Having established that we fi nd robust static 
ISC over the movie as a whole, we next zoomed in on specifi c story seg-
ments to examine how ISC might vary between structural story segments.

Analysis across Diff erent Story Segments (H2 and RQ1)
We next examined how ISC varied among our delineated narrative seg-
ments, again specifi cally zooming in on brain responses within the network 
of interest, the mentalizing network. To this end, we extracted the fMRI data 
from the network-mask as a whole as well as from individual subnodes, 
particularly the rTPJ (see Methods and fi gure 3). We divided the time series 
based on our coded plot segments (premise, the rising action, the climax/
fall out, all relevant for H2, and the resolution, for RQ1), and then examined 
these shorter sections via segment-wise ISC analyses.

As shown in fi gure 5, by-segment ISC within the mentalizing network 
nominally increases over the fi rst three narrative segments, up to and in-
cluding the story’s climax (ISCPremise = 0.182, ISCRising Action = 0.354, ISCClimax/Fallout = 
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Figure 5. Result for 
the by-segment ISC 
analysis for the adult 
group 

The height of the bar 
plot indicates ISC 
strength within each 
segment, whereby 
ISC was computed 
across the extracted 
fMRI time series from 
the network-mask

0.363). In principle, one could argue that the general pattern of by-segment 
ISC can be of interest even without testing for signifi cance between consec-
utive segments (i.e., if one viewed by-segment ISC as a group-level metric of 
audience engagement during parts of a narrative whose gestalt is import-
ant). However, given that we postulated an increase in ISC, this does call 
for statistical comparisons. Testing for diff erences between the ISC during 
successive segments via nonparametric permutation testing, we fi nd that 
the increase in ISC from the premise to the rising action is statistically sig-
nifi cant (p = 0.003), which is in line with H2. However, the small nominal 
increase from the rising action to the climax phase (ISCRising Action = 0.354 to 
ISCClimax/Fallout = 0.363) is not statistically signifi cant (p = 0.79). Thus, although 
the results are generally in line with H2, the pattern is not fully supported.

Next, the exploratory research question (RQ1) concerned ISC during the 
resolution phase, after the story’s climax has been resolved. Here, we see 
a slight drop in nominal ISC from a level of ISCClimax/Fallout = 0.363 to ISCResolution

= 0.357, though statistical testing revealed that this is not statistically signif-
icant (p = 0.96).

Next, we zoomed in on the rTPJ as the region that has been most of-
ten associated with mentalizing and related social-cognitive processes in 
prior literature. The rTPJ reveals a slightly diff erent pattern of shared activity 
(ISCPremise = 0.213, ISCRising Action = 0.391, ISCClimax/Fallout = 0.262, ISCResolution = 0.259). 
In the rTPJ, ISC is highest during the rising action of the narrative but pla-
teaus in a way that diverges from the mentalizing network as a whole. While 
the overall network trend is as anticipated, this diff erence is of particular 
note.
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ISC during Movie Viewing across Age Groups (RQ2)
Finally, to examine the consistency of these fi ndings across age groups, we 
carried out ISC analyses for three age bands (older children: 8 to 12 years 
old; middle aged children: 5 to 8 years old; young children: 3 to 5 years old) 
and compared these to an adult sample. Figure 6 shows the results of this 
analysis. As can be seen, the ISC eff ects are expressed in a similar fashion in 
the four independent age groups. To quantify this similarity, we correlated 
the spatial pattern of ISC results (i.e., group-wise vectors of 268 regional ISC 
values). This analysis revealed that the spatial pattern of ISC is highly similar 
between adults and older children (r(266) = 0.91, p < 0.001), and all other 
correlations between adult and children (old, middle, young) groups and 
within the subgroups of children also exceeded r(266) = 0.84, p < 0.001.

Inspection of fi gure 6 also suggests that the adult audience exhibits 
the highest level of ISC and the average level of ISC supports this obser-
vation (mean across all 268 brain regions: ISCadults = 0.21, ISColder children = 0.19, 
ISCmiddle aged children = 0.18, and ISCyoung children = 0.12, note that these values re-
fl ect pairwise ISC analysis instead of the LOO-based method to avoid bias 
due to unequal group sizes). To formally test for group diff erences in ISC 
strength, we compared the regional level of ISC between groups. In the 
lateral occipital cortex, for instance, where ISC for visual movies is typically 
strongest, we fi nd the strongest ISC for adults compared to all other groups 
(ISCadults:ISC, pairwise = 0.30, ISColder children = 0.13, ISCmiddle aged children = 0.088, ISCyoung children 
= 0.09; Kruskal-Wallis H = 761.71, p < 0.001); similar results were obtained 
for the majority of brain regions (ISC for adults is strongest for 100 out of 
182 regions where diff erences are signifi cant—see repository). While we 
did not formally test for an age-gradient, the strength of ISC appeared to 
decrease in younger groups (e.g., the youngest groups never exhibited the 
highest ISC among the groups among 182 regions that showed statistically 
signifi cant diff erences). Taken together, these fi ndings suggest that while 
all groups exhibit the expected spatial distribution of ISC across the cortex, 
responses seem to be more idiosyncratic (lower ISC) among the younger 
audiences.

Next, zooming in again on the mentalizing system specifi cally, ISC is ob-
served across age groups, albeit less clearly for the youngest kids. This was 
again examined by computing ISC for the mentalizing network as a whole 
and then individually for individual subnodes (rTPJ, lTPJ, mPFC, precuneus). 
Again, for the system as a whole, we fi nd signifi cant ISC in each group (i.e., 
ISCs = .29, 0.27, 0.3, and 0.2 for adults, older, middle, and young children, 
respectively;12 all ps < 0.001, FDR-corrected).

Finally, running these analyses also for individual nodes, particularly the 
rTPJ, revealed the same pattern of results ISCright TPJ, adults = 0.3, ISCright TPJ: older children 
= 0.32, ISCright TPJ, middle aged children = 0.325, ISCright TPJ, young children = 0.168, all ps < 0.001, 
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FDR-corrected).13 In sum, we fi nd that in the brain regions comprising the 
mentalizing system, shared audience brain responses are present even in 
the youngest audiences, albeit at a slightly lesser degree for the youngest 
viewers.14

Discussion
The current study used existing fMRI data of an audience watching a Pixar 
short fi lm to examine the shared brain activity of audience members across 
the whole brain and in a network of brain regions associated with social-

Figure 6. ISC results for diff erent age groups

Top row. ISCs among adults and older, middle, and young children show a highly similar pattern 
of movie-induced static ISC, although responses are more variable among the younger children.

Middle row. Scatter plots demonstrating the high correlation between the cortical distribution of 
ISC values for adults and all three child audiences.

Bottom row. By-segment ISC within the mentalizing network for child audiences (see fi gure 5).
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cognitive processes. We examined how collective engagement (as indicated 
by ISC) may vary (a) over the course of the story’s unfolding plot and (b) 
across age groups. The general fi ndings are in keeping with previous ISC 
literature, and show that viewers’ brain response patterns resemble each 
other—not only across the whole brain and in visual processing regions, 
but also in higher-order brain regions that have often been implicated in 
story processing and social cognition, broadly defi ned.

The unique contributions here are twofold. First, to our knowledge, this 
is the fi rst attempt to examine how brain activity tracks with formal con-
ceptions of narrative structure as a framework for audience engagement. 
Second, we see preliminary evidence that regions comprising the mental-
izing network (which signifi cantly overlaps with the default mode) exhibit 
diff erential brain activity during a socially focused story for audiences of 
diff erent ages.

When we look at the segmented plot, ISC analysis indicates that narra-
tives increasingly align the brain activity of individual audience members, 
suggesting collectively shared engagement with the story increases as the 
plot unfolds. We emphasize that the term shared engagement here refers 
to the observable brain response evoked during reception of the movie 
content, and we cannot know whether viewers also had shared cognitive or 
aff ective experiences because no data about this were available. However, 
empirically we fi nd that within a network of regions associated with social 
cognition and story processing, the audience’s brain responses are less 
correlated as the premise, plot, and characters are introduced, but shared 
processing (i.e., correlations between viewers’ brain activities) increases 
over the course of the rising action. This culminates in the strongest in-
ter-subject correlations during the climax of the narrative. This alignment 
of brain activity across audience members is roughly maintained through to 
the end of the story, though this may be owing in part to the short duration 
of our stimulus.

While signifi cant additional work is needed to replicate these fi ndings 
with other fi lms and other audiences, this preliminary evidence is encour-
aging. Our analyses indicate that activity within the mentalizing network 
of many audience members seems to become more aligned as the plot 
unfolds, and most aligned in the climactic moments of the fi lm. Though it 
should be noted that while we see this across the meta-analytically defi ned 
mentalizing network, we do not see this exact same pattern in the rTPJ 
(here, audiences are most aligned during the rising action). The rTPJ region 
has historically been most consistently associated with social cognition, 
and the diff erential patterns of activation within this region and the men-
talizing network as a whole warrant additional exploration. In sum, while 
our results suggest that by-segment ISCs are a promising approach to ex-
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amine the relationship between story structure and audience responses, 
generalization to other stimuli and larger audiences will still be needed 
going forward.

When we look across age groups, prior psychological literature clearly 
demonstrates that both social cognition and story comprehension skills 
develop as children mature. The current results demonstrate that the neu-
ral responses during online story processing are relatively similar between 
adults and children, but on a more granular level, younger children are, 
in some ways, an audience unto themselves. On its surface, this may be 
unexceptional (as the primary data collectors noted, helping small children 
stay still in a scanner can be a challenge; Richardson et al. 2018). However, 
as developmental psychologists and media scholars both seek to under-
stand what children pay attention to and what they glean from the deluge 
of media content to which they are exposed, neural evidence is a key fac-
tor in message processing, particularly in regions of the brain associated 
with social cognition (including perspective-taking and empathy) that can 
be a valuable fi rst step in illuminating how stories capture the minds of 
audiences and what infl uence this may have on subsequent processing as 
children develop.

Understanding how age-related developmental factors infl uence so-
cial processing and narrative engagement is particularly relevant to culti-
vation research (Gerbner et al. 1986) and other social-cognitive theories 
(e.g., Bandura 1994) seeking to explain how media portrayals may infl uence 
children’s real-world behaviors and expectations. The ages at which mod-
eling narratives are most eff ective and the limits of these interventions is 
a fruitful area of scholarship (e.g., Mares and Pan 2013; see Cantlon and 
Li 2013, for an ISC-based study examining Sesame Street from a cognitive-
developmental perspective).

For media scholars more broadly, demonstrating the potential links 
between the continuous brain activity recordings and foundational con-
structs like narrative engagement and involvement is a promising avenue 
for future inquiry. Researchers have long struggled to clearly describe and 
measure these processes in order to explain their mechanisms (Hofer 
2016). Recent developments in social and aff ective neuroscience have be-
gun to shed light on the biological mechanisms of psychological processes 
that underpin media consumption. Examining narrative processing via 
passive dynamic data collection of real-time brain activity is thus a valuable 
tool in our arsenal, and one that speaks to a host of theoretical topics 
that have proven diffi  cult to resolve using verbal-introspective methods. 
We hope that the current approach may, in time, contribute to longstand-
ing questions about mental models of story processing, narrative involve-
ment, engagement, and persuasion. Likewise, from a practical perspective, 
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understanding how and when stories command collective engagement is 
a tool that could help measure audience responses and aid message op-
timization strategies.

Strengths, Limitations, and Future Directions
As with any study, a number of limitations need to be acknowledged. First, 
we used secondary data to compile these analyses. This naturally limits the 
questions we could ask, the scale of our analyses, and some of the initial 
data cleaning procedures undertaken. While we are grateful for access to 
rich datasets that are diffi  cult and costly to compile, the secondary nature 
of this study restrained our ability to select stimuli and prevented us from 
examining important questions regarding story comprehension or enter-
tainment experiences (e.g., what did kids take away from the story, had 
they seen it before, etc.). Integrating neural data with behavioral (e.g., Magli-
ano and Zacks 2011) and experiential measures (Schmälzle and Grall 2020) 
would be a valuable next step in such inquiries. Similarly, examining ISC 
across traditional narrative segments provides insight into story process-
ing, however, it is worth noting that we used data from short fi lm viewing 
and not other narrative formats. We hope that future work will look at the 
important contributions of a fi lm’s formal features and the specifi c cogni-
tive processes implicated in fi lm comprehension using similar methods to 
shed further light on the role that content features play in these processes 
across a variety of media formats and platforms.

Second, while the potential for theoretically derived content analysis 
to inform neural analyses is promising and relatively novel, some meth-
odological questions and uncertainties remain, particularly regarding 
time-resolved ISC analyses and the ability to disentangle physical stimulus 
properties from social-cognitive content elements.

Third, we acknowledge our coding scheme for identifying segments of a 
narrative was rudimentary, and that this analytical approach could be im-
plemented in a variety of diff erent ways. Therefore, others should continue 
to explore additional approaches for specifying content structures (for ex-
ample, via event segmentation; Zacks, Speer, Swallow et al. 2010) in relation 
to narrative processing and neural activity.

Finally, this analysis assumed minimal structural diff erences among 
the brains of our various age groups. This is not without merit (see Rich-
ardson et al. 2018), however, experience and skill can materially alter neu-
ral architecture (Maguire et al. 2006). As such, there may be topological 
diff erences in mentalizing regions as these capacities develop throughout 
childhood. Therefore, more nuanced anatomical modeling and normal-
izing parameters among age groups would increase confi dence in these 
fi ndings.
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Despite these areas for improvement, the current study has several 
strengths. From a media studies perspective, rich, realistic, and popular 
content such as Pixar movies is an ideal testing ground for a real-world 
audience and media processing and eff ects. Popularity and viewer fi gures 
can be taken as a global metric of public appeal, and continued research 
into the online processing of media content should prioritize highly en-
gaging, age-appropriate content in this way to further examine the neural 
substrates of audience appeal and engagement (Dmochowski et al. 2014). 
From a design perspective, social cognition has traditionally been assessed 
through verbal tests. Yet Hilary Richardson and colleagues (2018) demon-
strate that the neural bases for social cognition show preferential activation 
even in children who consistently fail traditional false-belief tasks. In which 
case, passive measures of neurocognitive processes and non-verbal but 
highly social stimuli, such as those used here, are a necessary and promis-
ing direction for developmental inquiries, particularly as they relate to mes-
sage processing and their implications for observational learning.

 Conclusion
Here we examined how the brains of adults and older, middle, and younger 
children tune in to an engaging movie about social relationships. The re-
sults reveal that the brains of viewers become rather strongly aligned 
during the reception process, including within the mentalizing network. We 
see that this alignment of neural processes occurs similarly for adults and 
children, though the youngest children are slightly less aligned with each 
other than is observed with older audiences. We also examined whether 
the collectively shared brain responses can be used to examine the en-
grossing capacity of an unfolding plot. We fi nd preliminary evidence that 
ISC increases over the exposition and peaks at the story’s climax. However, 
again we emphasize that more work is needed to test the generality of 
these fi ndings across audiences, movies, and analytic strategies. In sum, 
the current approach lies truly at a crossroads of disciplines and opens up 
new possibilities for research on the neural processes that are key to the 
reception and eff ects of engaging narratives.
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Notes
1 The fi rst two authors contributed equally to this article.
2 While prior literature has established several cognitive processes inherent to fi lm 

comprehension (e.g., Magliano et al. 1996; Zacks, Speer, and Reynolds 2009), we feel it 
is important to note that this article is not testing fi lm processing specifi cally. Rather, it 
examines shared processing of narrative content (admittedly using a fi lm stimulus). No-
tably, several studies have demonstrated that comprehension and recall are remarkably 
similar across audiences of the same narrative in diff erent formats (Baggett 1979)—and 
more pertinently to the data used here, neural activity is also similar across audiences of 
the same narrative, including listeners hearing a story in diff erent languages (Honey et al. 
2012) and recipients of the same story in alternative formats (Tikka et al. 2018).

3 Importantly, to prevent any misunderstanding, we want to clarify that this hypoth-
esis refers only to similar brain responses (as captured via fMRI)—and makes no claim 
regarding the relationship between this observed neural activity and subjective expe-
rience. It is also important to clarify that observing diff erent brains that respond simi-
larly to the same content does not mean that they all respond in exactly the same way. 
Rather, it is well known that there are important individual diff erences in how people 
process narratives, although there are also substantial commonalities in audiences’ cog-
nitive responses and experiences (as demonstrated by similar inferences drawn during 
specifi c story moments, agreement about structural boundaries, or converging predic-
tions about future events; e.g., Magliano et al. 1996; Zacks, Speer, and Reynolds 2009). 
For instance, visual narrative comprehension is predicated on one’s developmental 
stage and cultural background (Cohn 2020).
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4 Note that this interpretation is considerably diff erent from other ways of analyzing 
and visualizing fMRI data: The fi gures in this article represent the consistency of contin-
uous brain responses across multiple viewers. By contrast, often-seen fMRI activation 
maps focus on how specifi c stimulus characteristic prompt discrete brain activations.

5 A brief description of the segments is as follows: Premise/Exposition: Clouds produce 
babies, storks deliver them. Rising Action: Gus, the cloud, makes “dangerous” babies. The 
babies hurt Peck, the stork. Climax & Fall out: Peck leaves for another cloud, Gus is very 
sad. Resolution: Peck returns to Gus, carrying protective gear. They reunite.

6 “ISC_StoryStructure_Projections.” Github. https://github.com/nomcomm/ISC_Story
Structure_Projections (accessed 3 September 2022).

7 In the LOO-method, each individual brain response time series is correlated against 
the average of the rest of the group, repeating this procedure for every audience mem-
ber, and then averaging the results. In the pairwise method, by contrast, each individual’s 
brain activity time series is correlated against another viewer’s brain activity, and the 
results from all these pairwise computations are then averaged. The LOO-method is 
faster and more robust against outliers, but if groups diff er in size (e.g., adults versus 
young children), then the LOO-method is biased to yield higher ISC in the larger group. 
Thus, while we will report LOO-based results as the default, comparisons of ISC between 
groups will utilize the pairwise method.

8 These onset times were shifted by 7 TRs (or 14 seconds) to accommodate the nat-
ural delay in the brain’s hemodynamic response function (~ 2 TRs) and because the 
in-scanner movie presentation started after a black screen lasting for 10 seconds (5 TRs).

9 “ISC_StoryStructure_Projections.” Github.
10 Results are signifi cant when tested against the null hypothesis that there is no 

similarity (ISC) across audience brains, as demonstrated by comparing the observed ISC 
for each region against a null distribution of ISC under no-alignment conditions that were 
simulated via a random phase-shift permutation analysis (1,000 permutations) (Nastase 
et al. 2019).

11 This value is still diff erent from zero, however, as brain systems do not work in iso-
lation and there may be an interaction between attention to the story and scanner noise. 
However, in prior work using spoken narratives there is much higher ISC in auditory and 
language-related regions than is seen here.

12 And we fi nd the same conclusion for pairwise analyses, which result in lower levels 
of ISC but are unbiased against diff erences in group size.

13 Adults (see above) ISCright TPJ = 0.3, ISCleft TPJ = 0.353, ISCmedial prefrontal cortex = 0.245, and 
ISCprecuneus = 0.374; Older Children: ISCright TPJ = 0.32, ISCleft TPJ = 0.285, ISCmedial prefrontal cortex = 0.195, 
and ISCprecuneus = 0.427; Middle Children: ISCright TPJ = 0.325, ISCleft TPJ = 0.26, ISCmedial prefrontal cortex 

= 0.204, and ISCprecuneus = 0.394; Young Children: ISCright TPJ = 0.168, ISCleft TPJ = 0.203, 
ISCmedial prefrontal cortex = 0.113, and ISCprecuneus = 0.258. These values refl ect ISC-measures based 
on LOO-analyses and are thus slightly biased by sample size, but the results were also 
confi rmed using pairwise ISC analysis.

14 While clearly these fi ndings cannot clarify all questions regarding the functional 
signifi cance of these regions, it does demonstrate that brains of diff erent audience age 
groups respond to content-driven factors consistently and in ways that can be objec-
tively quantifi ed. Of note, we want to reemphasize that these results refer to similarities 
in how the viewers’ brains responded to the movie, which does not mean that they had 
the same thoughts or feelings. Moreover, given the secondary nature of our study, we 
unfortunately cannot report data about viewers’ level of comprehension.
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Supplementary Table 1. Coded segments for content-based ISC analysis

Onset 
Second (TR)

Off set 
Second (TR)

Description

Premise, 
Exposition

28 (14) 104 (52) Clouds produce babies, 
storks deliver them.

Rising Action 104 (52) 246 (123) Gus, the cloud, makes “dangerous” 
babies. 
The babies hurt Peck, the stork.

Climax, 
Fall out

246 (123) 290 (145) Peck leaves for another cloud, 
Gus is very sad.

Resolution 290 (145) 328 (164) Peck returns to Gus, carrying 
protective gear. They reunite.

 


